Optimality Criteria Optimization of Truss Structures Under Multiple Frequency Constraints by the Linear Approximation Resizing Rule
DOI:
https://doi.org/10.20983/culcyt.2025.3.2.1Keywords:
optimization, optimality criterion, structural design, linear approximationAbstract
The optimization of structures requires an efficient method to minimize weight, while satisfying multiple types of constraints. This approach generalizes the optimality criteria for the specific type of constraints in the frequency. Equations of motion for truss structures are considered to obtain the derivatives of the constraints required by the optimality criterion. Exponential and linear resizing optimization rules for the design variables are described. In the first, the optimized areas are compared with the analytical solution for a continuous rod. As a second example the optimized frequencies, weights and areas obtained by the linear resizing rule are compared to reference values. Both examples demonstrate the validity and effectiveness of the optimality criteria approach for the frequency constraints in truss structures.
Downloads
References
V. Savsani, G. Tejani, and V. Patel, “Topology, Shape, and Size Optimization,” in Truss Optimization, V. Savsani, G, Tejani, and V. Patel, Eds. Switzerland: Springer Nature, 2024, pp. 241–359, doi: 10.1007/978-3-031-49295-2_6.
L. Siqueira, E. Silva, and R. Picelli, “Structural Topology Optimization with Volume and Natural Frequency Constraints by Using the TOBS Method,” in Proceedings of the 8th International Symposium on Solid Mechanics, M. Bittencourt and J. Labaki, Eds. 2024, pp. 79–92, doi: 10.1007/978-3-031-59804-3_5.
Q. Peng, T. Lin, W. Liu, and B. Chen, “An optimality criteria method hybridized with dual programming for topology optimization under multiple constraints by moving asymptotes approximation,” Comput Mech, vol. 69, no. 3, pp. 683–699, Mar. 2022, doi: 10.1007/s00466-021-02110-5.
K. Liu, Y. Bai, S. Yao, and S. Luan, “Topology optimization of shell-infill structures for natural frequencies,” Eng Comput, vol. 39, no. 8, pp. 3083–3107, Aug. 2022, doi: 10.1108/EC-03-2022-0135.
Z. Wu, J. Wu, F. Lu, C. Zhang, Z. Liu, and Y. Zhu, “Free vibration analysis and multi-objective optimization of lattice sandwich beams,” Mech. Adv. Mater. Struct., vol. 31, no. 17, pp. 4037–4050, Sep. 2024, doi: 10.1080/15376494.2023.2189333.
C. Wang, B. Zhang, S. Huang, W. Dou, S. Xin, and J. Yan, “Topological Design of a Nanosatellite Structure with Optimal Frequency Responses Filled by Non-Uniform Lattices,” Chin. J. Mech. Eng., vol. 37, no. 1, p. 161, Dec. 2024, doi: 10.1186/s10033-024-01156-9.
L. Chen, Y. Pan, X. Chu, H. Liu, and X. Wang, “Multiscale design and experimental verification of Voronoi graded stochastic lattice structures for the natural frequency maximization problem,” Acta Mechanica Sinica, vol. 39, no. 8, p. 422445, Aug. 2023, doi: 10.1007/s10409-023-22445-x.
M. Beghini et al., “Tuning Modal Behavior of Additively Manufactured Lattice Structures,” J Eng Gas Turbine Power, vol. 146, no. 7, Jul. 2024, doi: 10.1115/1.4064264.
A. A. Pessoa and J. M. Aroztegui, “A Cutting Plane Approach to Maximization of Fundamental Frequency in Truss Topology Optimization,” Research Square, Oct. 24, 2023, doi: 10.21203/rs.3.rs-3459452/v1.
V. Goodarzimehr, U. Topal, A. K. Das, and T. Vo-Duy, “SABO algorithm for optimum design of truss structures with multiple frequency constraints,” Mech. Based Des. Struct. Mach., vol. 52, no. 10, pp. 7745–7777, Oct. 2024, doi: 10.1080/15397734.2024.2308652.
Z. Deng, Y. Liang, and G. Cheng, “Discrete variable topology optimization for maximizing single/multiple natural frequencies and frequency gaps considering the topological constraint,” Int J Numer Methods Eng, vol. 125, no. 10, May 2024, doi: 10.1002/nme.7449.
A. Kaveh and H. Yousefpoor, “Chaotically Enhanced Meta-Heuristic Algorithms for Optimal Design of Truss Structures with Frequency Constraints,” Period. Polytech. Civil Eng., vol. 66, no. 3, pp. 900–921, Jan. 2022, doi: 10.3311/PPci.20220.
A. Kaveh and H. Yousefpour, “Comparison of Three Chaotic Meta-heuristic Algorithms for the Optimal Design of Truss Structures with Frequency Constraints,” Period. Polytech. Civil Eng., vol. 67, no. 4, Jan. 2023, doi: 10.3311/PPci.22594.
X. Teng, Q. Li, and X. Jiang, “A Smooth Bidirectional Evolutionary Structural Optimization of Vibrational Structures for Natural Frequency and Dynamic Compliance,” Comput. Model. Eng. Sci., vol. 135, no. 3, pp. 2479–2496, 2023, doi: 10.32604/cmes.2023.023110.
Q. Wu, Q. Li, and S. Liu, “A method for eliminating local modes caused by isolated structures in dynamic topology optimization,” Comput Methods Appl Mech Eng, vol. 418, p. 116557, Jan. 2024, doi: 10.1016/j.cma.2023.116557.
H. R. Najafabadi, T. C. Martins, J. Hanamoto, M. S. G. Tsuzuki, and A. Barari, “Natural Frequency Control Using Simulated Annealing-Based Binary Topology Optimization,” 2023 15th IEEE International Conference on Industry Applications (INDUSCON), Nov. 2023, pp. 1463–1467, doi: 10.1109/INDUSCON58041.2023.10374765.
V. Shah, M. Pamwar, B. Sangha, and I. Y. Kim, “Multi-material topology optimization considering natural frequency constraint,” Eng Comput, vol. 39, no. 7, pp. 2604–2629, Jul. 2022, doi: 10.1108/EC-07-2021-0421.
W. Wei, T. Qingguo, W. Fengbin, F. Yesen, Z. Shikun, and Z. Wenhui, “A Multi-Objective Topology Optimization Method Used in Simultaneous Constraints of Natural Frequency and Static Stiffness,” 2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML), Hangzhou, China, Mar. 2022, pp. 7–12, doi: 10.1109/CACML55074.2022.00010.
A. Zacharopoulos, K. D. Willmert, and M. R. Khan, “An optimality criterion method for structures with stress, displacement and frequency constraints,” Comput Struct, vol. 19, no. 4, 1984, doi: 10.1016/0045-7949(84)90109-3.
T. R. Haftka and G. Zafer, Elements of Structural Optimization, 3rd ed. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1991, doi: 10.1007/978-94-011-2550-5.
R. V. Grandhi and V. B. Venkayya, “Structural optimization with frequency constraints,” AIAA Journal, vol. 26, no. 7, pp. 858–866, 1988, doi: 10.2514/3.9979.
R. Canfield, V. Venkayya, and R. Grandhi, “Structural Optimization with Stiffness and Frequency Constraints,” Mechanics of Structures and Machines, vol. 17, no. 1, pp. 95–110, Mar. 1989, doi: 10.1080/089054508915631.
R. Levy and K. Chai, “Implementation of natural frequency analysis and optimality criterion design,” Comput. Struct., vol. 10, nos. 1–2, pp. 277-282, Apr. 1979, doi: 10.1016/0045-7949(79)90096-8.
G. Dasgupta, “Finite Element Basics with the Bar Element: Uniaxial Deformations—Interpolants, Stiffness Matrices and Nodal Loads,” in Finite Element Concepts, G. Dasgupta, Ed. New York, NY: Springer New York, 2018, pp. 1–41, doi: 10.1007/978-1-4939-7423-8_1.
M. J. Turner, “Design of minimum mass structures with specified natural frequencies,” AIAA Journal, vol. 5, no. 3, pp. 406–412, 1967, doi: 10.2514/3.3994.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 José Alfredo Ramírez Monares, Elva Lilia Jardón Reynoso, Quirino Estrada Barbosa

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Todos los contenidos de CULCYT se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento-No Comercial 4.0 Internacional” (CC-BY-NC). Puede consultar desde aquí la versión informativa de la licencia.
Los autores/as que soliciten publicar en esta revista, aceptan los términos siguientes: a) los/las autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra; y b) se permite y recomienda a los/las autores/as agregar enlaces de sus artículos en CULCYT en la página web de su institución o en la personal, debido a que ello puede generar intercambios interesantes y aumentar las citas de su obra publicada.
