Optimality Criteria Optimization of Truss Structures Under Multiple Frequency Constraints by the Linear Approximation Resizing Rule

Authors

DOI:

https://doi.org/10.20983/culcyt.2025.3.2.1

Keywords:

optimization, optimality criterion, structural design, linear approximation

Abstract

The optimization of structures requires an efficient method to minimize weight, while satisfying multiple types of constraints. This approach generalizes the optimality criteria for the specific type of constraints in the frequency. Equations of motion for truss structures are considered to obtain the derivatives of the constraints required by the optimality criterion. Exponential and linear resizing optimization rules for the design variables are described. In the first, the optimized areas are compared with the analytical solution for a continuous rod. As a second example the optimized frequencies, weights and areas obtained by the linear resizing rule are compared to reference values. Both examples demonstrate the validity and effectiveness of the optimality criteria approach for the frequency constraints in truss structures.

Downloads

Download data is not yet available.

Author Biographies

José Alfredo Ramírez Monares, Autonomous University of Ciudad Juárez

Professor-researcher, Departamento de Ingeniería Industrial y Manufactura, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez - campus Ciudad Universitaria; Ciudad Juárez, Chihuahua, México

Elva Lilia Jardón Reynoso, Autonomous University of Ciudad Juárez

Professor-researcher, Programa de Ingeniería en Manufactura, Departamento de Ingeniería Industrial y Manufactura, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez; Ciudad Juárez, Chihuahua, México

Quirino Estrada Barbosa, Autonomous University of Ciudad Juárez

Professor-researcher, Programa de Ingeniería en Diseño y Automatización Agrícola, Departamento de Ingeniería Industrial y Manufactura, Universidad Autónoma de Ciudad Juárez - Campus Cuauhtémoc; Ciudad Juárez, Chihuahua, México

References

V. Savsani, G. Tejani, and V. Patel, “Topology, Shape, and Size Optimization,” in Truss Optimization, V. Savsani, G, Tejani, and V. Patel, Eds. Switzerland: Springer Nature, 2024, pp. 241–359, doi: 10.1007/978-3-031-49295-2_6.

L. Siqueira, E. Silva, and R. Picelli, “Structural Topology Optimization with Volume and Natural Frequency Constraints by Using the TOBS Method,” in Proceedings of the 8th International Symposium on Solid Mechanics, M. Bittencourt and J. Labaki, Eds. 2024, pp. 79–92, doi: 10.1007/978-3-031-59804-3_5.

Q. Peng, T. Lin, W. Liu, and B. Chen, “An optimality criteria method hybridized with dual programming for topology optimization under multiple constraints by moving asymptotes approximation,” Comput Mech, vol. 69, no. 3, pp. 683–699, Mar. 2022, doi: 10.1007/s00466-021-02110-5.

K. Liu, Y. Bai, S. Yao, and S. Luan, “Topology optimization of shell-infill structures for natural frequencies,” Eng Comput, vol. 39, no. 8, pp. 3083–3107, Aug. 2022, doi: 10.1108/EC-03-2022-0135.

Z. Wu, J. Wu, F. Lu, C. Zhang, Z. Liu, and Y. Zhu, “Free vibration analysis and multi-objective optimization of lattice sandwich beams,” Mech. Adv. Mater. Struct., vol. 31, no. 17, pp. 4037–4050, Sep. 2024, doi: 10.1080/15376494.2023.2189333.

C. Wang, B. Zhang, S. Huang, W. Dou, S. Xin, and J. Yan, “Topological Design of a Nanosatellite Structure with Optimal Frequency Responses Filled by Non-Uniform Lattices,” Chin. J. Mech. Eng., vol. 37, no. 1, p. 161, Dec. 2024, doi: 10.1186/s10033-024-01156-9.

L. Chen, Y. Pan, X. Chu, H. Liu, and X. Wang, “Multiscale design and experimental verification of Voronoi graded stochastic lattice structures for the natural frequency maximization problem,” Acta Mechanica Sinica, vol. 39, no. 8, p. 422445, Aug. 2023, doi: 10.1007/s10409-023-22445-x.

M. Beghini et al., “Tuning Modal Behavior of Additively Manufactured Lattice Structures,” J Eng Gas Turbine Power, vol. 146, no. 7, Jul. 2024, doi: 10.1115/1.4064264.

A. A. Pessoa and J. M. Aroztegui, “A Cutting Plane Approach to Maximization of Fundamental Frequency in Truss Topology Optimization,” Research Square, Oct. 24, 2023, doi: 10.21203/rs.3.rs-3459452/v1.

V. Goodarzimehr, U. Topal, A. K. Das, and T. Vo-Duy, “SABO algorithm for optimum design of truss structures with multiple frequency constraints,” Mech. Based Des. Struct. Mach., vol. 52, no. 10, pp. 7745–7777, Oct. 2024, doi: 10.1080/15397734.2024.2308652.

Z. Deng, Y. Liang, and G. Cheng, “Discrete variable topology optimization for maximizing single/multiple natural frequencies and frequency gaps considering the topological constraint,” Int J Numer Methods Eng, vol. 125, no. 10, May 2024, doi: 10.1002/nme.7449.

A. Kaveh and H. Yousefpoor, “Chaotically Enhanced Meta-Heuristic Algorithms for Optimal Design of Truss Structures with Frequency Constraints,” Period. Polytech. Civil Eng., vol. 66, no. 3, pp. 900–921, Jan. 2022, doi: 10.3311/PPci.20220.

A. Kaveh and H. Yousefpour, “Comparison of Three Chaotic Meta-heuristic Algorithms for the Optimal Design of Truss Structures with Frequency Constraints,” Period. Polytech. Civil Eng., vol. 67, no. 4, Jan. 2023, doi: 10.3311/PPci.22594.

X. Teng, Q. Li, and X. Jiang, “A Smooth Bidirectional Evolutionary Structural Optimization of Vibrational Structures for Natural Frequency and Dynamic Compliance,” Comput. Model. Eng. Sci., vol. 135, no. 3, pp. 2479–2496, 2023, doi: 10.32604/cmes.2023.023110.

Q. Wu, Q. Li, and S. Liu, “A method for eliminating local modes caused by isolated structures in dynamic topology optimization,” Comput Methods Appl Mech Eng, vol. 418, p. 116557, Jan. 2024, doi: 10.1016/j.cma.2023.116557.

H. R. Najafabadi, T. C. Martins, J. Hanamoto, M. S. G. Tsuzuki, and A. Barari, “Natural Frequency Control Using Simulated Annealing-Based Binary Topology Optimization,” 2023 15th IEEE International Conference on Industry Applications (INDUSCON), Nov. 2023, pp. 1463–1467, doi: 10.1109/INDUSCON58041.2023.10374765.

V. Shah, M. Pamwar, B. Sangha, and I. Y. Kim, “Multi-material topology optimization considering natural frequency constraint,” Eng Comput, vol. 39, no. 7, pp. 2604–2629, Jul. 2022, doi: 10.1108/EC-07-2021-0421.

W. Wei, T. Qingguo, W. Fengbin, F. Yesen, Z. Shikun, and Z. Wenhui, “A Multi-Objective Topology Optimization Method Used in Simultaneous Constraints of Natural Frequency and Static Stiffness,” 2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML), Hangzhou, China, Mar. 2022, pp. 7–12, doi: 10.1109/CACML55074.2022.00010.

A. Zacharopoulos, K. D. Willmert, and M. R. Khan, “An optimality criterion method for structures with stress, displacement and frequency constraints,” Comput Struct, vol. 19, no. 4, 1984, doi: 10.1016/0045-7949(84)90109-3.

T. R. Haftka and G. Zafer, Elements of Structural Optimization, 3rd ed. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1991, doi: 10.1007/978-94-011-2550-5.

R. V. Grandhi and V. B. Venkayya, “Structural optimization with frequency constraints,” AIAA Journal, vol. 26, no. 7, pp. 858–866, 1988, doi: 10.2514/3.9979.

R. Canfield, V. Venkayya, and R. Grandhi, “Structural Optimization with Stiffness and Frequency Constraints,” Mechanics of Structures and Machines, vol. 17, no. 1, pp. 95–110, Mar. 1989, doi: 10.1080/089054508915631.

R. Levy and K. Chai, “Implementation of natural frequency analysis and optimality criterion design,” Comput. Struct., vol. 10, nos. 1–2, pp. 277-282, Apr. 1979, doi: 10.1016/0045-7949(79)90096-8.

G. Dasgupta, “Finite Element Basics with the Bar Element: Uniaxial Deformations—Interpolants, Stiffness Matrices and Nodal Loads,” in Finite Element Concepts, G. Dasgupta, Ed. New York, NY: Springer New York, 2018, pp. 1–41, doi: 10.1007/978-1-4939-7423-8_1.

M. J. Turner, “Design of minimum mass structures with specified natural frequencies,” AIAA Journal, vol. 5, no. 3, pp. 406–412, 1967, doi: 10.2514/3.3994.

Published

2025-11-28

How to Cite

[1]
J. A. Ramírez Monares, E. L. Jardón Reynoso, and Q. Estrada Barbosa, “Optimality Criteria Optimization of Truss Structures Under Multiple Frequency Constraints by the Linear Approximation Resizing Rule”, Cult. Científ. y Tecnol., vol. 22, no. 3, pp. 5–13, Nov. 2025.