IoT system for intelligent monitoring and control of Californian worm breeding beds

Authors

DOI:

https://doi.org/10.20983/culcyt.2025.2.4e.1

Keywords:

IoT system, monitoring and control, vermicompost, earth worm

Abstract

The objective of this research is to develop an Internet of Things (IoT)-based system for real-time monitoring and control of key climatological variables, such as temperature and humidity, in a California worm bed (Eisenia fetida). This system is designed to maintain the health of the worm colony, improving breeding conditions and maximizing the production of solid humus and leachate. The proposed IoT system is intended to enable efficient remote control, monitoring the conditions of the breeding bed and adjusting variables to prevent unfavorable scenarios for worm health. By incorporating IoT sensors and a structural design, which includes aeration and leachate collection mechanisms, optimal monitoring and control are sought to ensure the continuous production of high-quality vermicompost. Preliminary results include the construction of the breeding box, the appropriate selection of sensors, and the validation of the system through temperature and humidity measurement tests. Currently, the next step is to integrate all the components and conduct tests with worms to evaluate the system's performance under real-life operating conditions.

Downloads

Download data is not yet available.

Author Biographies

Diana Alejandra Ortega Castillo, Universidad Autónoma de Ciudad Juárez

Master of Technology Student, Departamento de Ingeniería Industrial y Manufactura, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez: Ciudad Juárez, Chihua, México

Israel Ulises Ponce Mon´árrez, Universidad Autónoma de Ciudad Juárez

Full-time Professor, Departamento de Ingeniería Industrial y Manufactura, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez: Ciudad Juárez, Chihuahua, México

References

R. Manchal, T. Venuste y S. R. Verma, “Vermicomposting, a key to sustainable agriculture: A review”, Farm. Manage., vol. 8, n.º 2, pp. 81-93, dic. 2023, doi: 10.31830/2456-8724.2023.fm-128.

K. Yadav, N. Singh, S. Nayak y S. Kumar, “Sustainable vermicomposting: an eco-friendly approach to boost crop productivity”, en Futuristic Trends in Agriculture Engineering & Food Sciences, IIIP Series, 2024, cap. 4. doi: 10.58532/v3bcag16p2ch1.

V. B. Shalini, A. U. Maheswari, C. Marimuthu y J. Jeshima, “Vermi-Composting using AI in IoT”, 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, 2022, pp. 1489-1493, doi: 10.1109/ICAAIC53929.2022.9793207.

P. Román, M. M. Martínez y A. Pantoja, Manual de compostaje del agricultor. Experiencias en América Latina. Chile: FAO, 2013.

V. G. Sonole, Soumya CB, A. Meghana y M. G. Shetty, “Vermicompost: An integral part in urban agriculture”, Int. J. Res. Agron., vol. 7, n.º 8, parte B, pp. 89-92, 2024, doi: 10.33545/2618060x.2024.v7.i8b.1191.

FAO, Rikolto y RUAF, Urban and peri-urban agriculture sourcebook. From production to food systems. Roma: FAO and Rikolto, 2022. [En línea]. Disponible: https://doi.org/10.4060/cb9722en

“Growing greener cities in Africa”, Food and Agriculture Organization, Roma, Italia, First status report on urban and peri-urban horticulture in Africa, 2012. Accedido: en. 11, 2024. [En línea]. Disponible: https://www.fao.org/4/i3002e/i3002e.pdf

“¿Qué es un huerto urbano?”. Iberdrola.com. Accedido: oct. 20, 2024. [En línea]. Disponible: https://www.iberdrola.com/compromiso-social/que-es-un-huerto-urbano

I. I. Bashour y A. H. Sayegh, Methods of Analysis for Soils of Arid and Semi-arid Regions. Roma: Food and Agriculture Organization of the United Nations, 2007.

FAO, El estado de los recursos de tierras y aguas del mundo para la alimentación y la agricultura. La gestión de los sistemas en situación de riesgo. Roma: FAO / Madrid: Mundi-Prensa, 2011.

“Economía Circular de los residuos orgánicos para la ciudad y el campo”. One planet. Accedido: oct. 28, 2024. [En línea]. Disponible: https://www.oneplanetnetwork.org/knowledge-centre/resources/economia-circular-de-los-residuos-organicos-para-la-ciudad-y-el-campo

Q. Abad y S. Shafiqi, “Vermicompost: Significance and Benefits for Agriculture”, J. Res. Appl. Sci. Biotechnol., vol. 3, n.º 2, 2024, doi: 10.55544/jrasb.3.2.36.

D. I. Korobushkin, P. G. Garibian, L. A. Pelgunova y A. S. Zaitsev, “The earthworm species Eisenia fetida accelerates the decomposition rate of cigarette butts on the soil surface”, Soil Biol. Biochem., vol. 151, p. 108022, 2020, doi: 10.1016/J.SOILBIO.2020.108022.

H. Kaka, P. A. Oputey M. S. Maboeta, “Potential Impacts of Climate Change on the Toxicity of Pesticides towards Earthworms”, J. Toxicol., vol. 2021, p. 8527991, 2021, doi: 10.1155/2021/8527991.

N. Tilikj, M. de la Fuente, A. B. Muñiz, J.-L. Martínez-Guitarte y M. Novo, “Surviving a multistressor world: Gene expression changes in earthworms exposed to heat, desiccation, and chemicals”, Environ Toxicol Pharmacol, vol. 108, p. 104428 , 2024, doi: 10.1016/j.etap.2024.104428.

Sequence indicating monitoring system, por J. Sargent, K. C. Linder y A. I. Goodman. (1996, oct. 11). Patente US3278920A [En línea]. Disponible: https://patents.google.com/patent/US3278920A

S. Lengyel et al., “A review and a framework for the integration of biodiversity monitoring at the habitat level”, Biodivers. Conserv., vol. 17, n.º 14, pp. 3341-3356, 2008, doi: 10.1007/S10531-008-9359-7.

A. Arsenashvili. (2023). Variable Structure Optimal Control Problem for the Economic-Political Systems with Continuous Intermediate Conditions. Presentado en conferencia. [En línea]. doi: 10.55896/978-9941-8-5764-5/2023-225-234.

Published

2025-08-31

How to Cite

[1]
D. A. Ortega Castillo and I. U. Ponce Mon´árrez, “IoT system for intelligent monitoring and control of Californian worm breeding beds”, Cult. Científ. y Tecnol., vol. 22, no. 2, pp. E78-E85, Aug. 2025.

Issue

Section

Special Edition "Integration and Innovation Towards Sustainable Development"