Evaluation of adjustable functionality and mechanical properties of a transradial mechanical prosthesis for 3D printing
DOI:
https://doi.org/10.20983/culcyt.2024.3.2.11Keywords:
mechanical prosthesis, transradial amputee, mechanical properties, 3D printingAbstract
This work aimed to evaluate the adjustable functionality of a proposed design for a transradial mechanical prosthesis for 3D printing and to compare the mechanical properties of 3 material: PLA, ABS, and PETG. Anthropometric measurements were obtained from EBSCOhost and entered the design to evaluate its adjustable functionality. In addition, simulations were performed to compare the mechanical properties of the materials at different positions and forces to identify the material with the best performance. Subsequently, a prototype of the selected material was created for performance testing with a Mark-10 machine to compare with the simulations. The adjustable evaluation data showed minor variations that didn’t pose an obstacle to its mechanical functionality while evaluations of von Mises stress, displacements, deformation, heat transfer, compression, acquisition, and accessibility established PLA as the most suitable. Finally, the prototype showed that, both in simulation and in the laboratory, the parts suffered greater displacement in the supination position. Despite minimal damage to the hand-arm joint, this design offers an accessible alternative, adjustable and cost-effective, and significantly reduced the fabrication time compared to traditional devices.
Downloads
References
R. Zambudio, Prótesis, órtesis y ayudas técnicas. Barcelona: Elsevier Masson, 2009.
K. Wendo et al., “Open-Source 3D Printing in the Prosthetic Field—The Case of Upper Limb Prostheses: A Review”, Machines, vol. 10, n.º 2, 2022, doi: 10.3390/machines10060413.
E. Guffey, After Universal Design: The Disability Design Revolution, 1.ª ed. Londres: Bloomsbury Visual Arts, 2023.
“What is e-NABLE?”. Enabling the Future. Accedido: sept. 21, 2023. [En línea]. Disponible en: https://enablingthefuture.org/
J. R. Oropeza, “Diseño de prótesis mecánica para impresión 3D para suplir la ausencia de un miembro superior a nivel transradial”, tesis, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, 2022, inédita.
C. L. Semasinghe, D. G. K. Madusanka, R. K. P. S. Ranaweera R. A. R. C. Gopura, “Transradial prostheses: Trends in development of hardware and control systems”, Int. J. Med. Robot., vol. 15, n.º 1, art. e1960, 2019, doi: 10.1002/rcs.1960.
“Upper Limb Prosthetic Solutions”. Steepergruop.com. Accedido: oct. 26, 2023. [En línea]. Disponible en: https://www.steepergroup.com/prosthetics/upper-limb-prosthetics/
Team_UnLimbited. “The unlimbited arm v2.1 - Alfie Edition”. Thingiverse.com. Accedido: oct. 26, 2023. [En línea]. Disponible en: https://www.thingiverse.com/thing:1672381
“THE RIT ARM”, Enabling the future. Accedido: oct. 26, 2023. [En línea]. Disponible en: https://enablingthefuture.org/upper-limb-prosthetics/rit-arm/
J. Simon. “Which Design?”. e-NABLE Devices Catalog. Accedido: feb. 18, 2024. [En línea]. Disponible en: https://hub.e-nable.org/s/e-nable-devices/wiki/Which+Design%3F
M. M. Alam, I. Ahmad, Y. Kumar, A. Samad, Y. Upadhyay y A. A. Khan, “Investigation of the Relationship Between Anthropometric Measurements and Forearm Postures with Grip Strength in Young Adults”, J Musculoskelet Res, vol. 25, n.º 4, dic. 2022, doi: 10.1142/S021895772250004X.
I. R. Musa, S. M. Omar y I. Adam, “Mid-upper arm circumference as a substitute for body mass index in the assessment of nutritional status among adults in eastern Sudan”, BMC Public Health, vol. 22, n.º 1, dic. 2022, doi: 10.1186/s12889-022-14536-4.
A. Patra, P. Chaudhary, V. Malhotra y K. Arora, “Identification of most consistent and reliable anatomical landmark to locate and protect radial nerve during posterior approach to humerus: A cadaveric study”, Anat Cell Biol, vol. 53, n.º 2, pp. 132-136, jun. 2020, doi: 10.5115/acb.20.075.
“Amplitud de Movimiento”. TAFAY y Cursos. Accedido: feb. 17, 2024. [En línea]. Disponible en: https://www.tafadycursos.com/cuerpo-humano/amplitud-de-movimiento
J. González. “Dibujo de manos: lo básico”. TTAMAYO.com. Accedido: feb. 17, 2024. [En línea]. Disponible en: https://www.ttamayo.com/2020/11/dibujo-de-manos-basico/
3DUniverse. “3D Universe Terrafilum PETG Filament”. shop3duniverse.com. Accedido: feb. 18, 2024. [En línea]. Disponible en: https://shop3duniverse.com/collections/3d-universe-terrafilum-materials
H. Kamel, O. Harraz, K. Azab y T. Attia, “Developing an Optimized Low-Cost Transtibial Energy Storage and Release Prosthetic Foot Using Three-Dimensional Printing”, J Eng Sci Med Diagn Ther, vol. 3, n.º 2, art. 21103, may. 2020, doi: 10.1115/1.4046319.
H. W. Huysamen, W. A. Kinnear, T. E. Fonternel, E. Turton, I. Yadroitsava y I. Yadroitsev, “3D Printed Laryngoscope For Endotracheal Intubation”, S Afr J Ind Eng, vol. 31, no. 3, pp. 209-217, nov. 2020, doi: 10.7166/31-3-2446.
G. K. Jones y R. Stopforth, “Mechanical Design and Development of the Touch Hand II Prosthetic Hand”, R&D Journal, vol. 32, pp. 23-34, en. 2016.
W. Wu, P. Geng, G. Li, D. Zhao, H. Zhang y J. Zhao, “Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS”, Materials, vol. 8, n.º 9, pp. 5834-5846, sept. 2015, doi: 10.3390/ma8095271.
Factores de riesgo ergonómico en el Trabajo-Identificación, análisis, prevención y control. Parte 1: Manejo manual de cargas, NOM-036-1-STPS-2018, STPS, 2018. [En línea]. Disponible en: https://www.dof.gob.mx/normasOficiales/7468/stps11_C/stps11_C.html
S. Islam, G. Bhat y P. Sikdar, “Thermal and acoustic performance evaluation of 3D-Printable PLA materials”, J. Build. Eng., vol. 67, art. 105979, 2023, doi: 10.1016/j.jobe.2023.105979.
B. Rădulescu et al., “Thermal Expansion of Plastics Used for 3D Printing”, Polymers, vol. 14, n.º 15, art. 3061, jul. 2022, doi: 10.3390/polym14153061.
MSE Supplies. “List of Thermal Expansion Coefficients (CTE) for Natural and Engineered Materials”. MSESupplies.com. Accedido: feb. 27, 2024. [En línea]. Disponible en: https://www.msesupplies.com/pages/list-of-thermal-expansion-coefficients-cte-for-natural-and-engineered-materials
O. Zmeskal, L. Marackova, T. Lapcikova, P. Mencik y R. Prikryl, “Thermal properties of samples prepared from polylactic acid by 3D printing”, AIP Conf. Proc., vol. 2305, n.º 2, 2020, doi: 10.1063/5.0033857.
M. Malvezzi, Z. Iqbal, M. C. Valigi, M. Pozzi, D. Prattichizzo y G. Salvietti, “Design of Multiple Wearable Robotic Extra Fingers for Human Hand Augmentation”, Robotics, vol. 8, n.º 4, dic. 2019, doi: 10.3390/ROBOTICS8040102.
Dielectric Manufacturing. “PETG Characteristics”. dielectricMFG.com. Accedido: feb. 27, 2024. [En línea]. Disponible en: https://dielectricmfg.com/resources/knowledge-base/petg/
J. Suder, Z. Bobovsky, J. Mlotek, M. Vocetka, Z. Zeman y M. Safar, “Experimental Analysis of Temperature Resistance of 3D Printed PLA Components”, MM Science Journal, vol. 2021, n.º 1, pp. 4322-4327, mar. 2021, doi: 10.17973/MMSJ.2021_03_2021004.
Ultimaker. “Technical data sheet ABS”. Farnell.com. Accedido: feb. 27, 2024. [En línea]. Disponible en: https://www.farnell.com/datasheets/2310520.pdf
“PLA ácido poliláctico”. Plásticos Brello. Accedido: feb. 27, 2024. [En línea]. Disponible en: https://plasticos-brello.com/material/pla-acido-polilactico/
B. Freeland et al., “A Review of Polylactic Acid as a Replacement Material for Single-Use Laboratory Components”, Materials, vol. 15, n.º 9, may. 1, 2022, doi: 10.3390/ma15092989.
“Convección”. Dassault systems. Accedido: feb. 27, 2024. [En línea]. Disponible en: https://help.solidworks.com/2024/spanish/SolidWorks/cworks/c_Convection.htm?id=5ce0d5420a704d57835a1563bfd658d3#Pg0
M. Vergara, M. J. Agost y V. Gracia‐Ibáñez, “Dorsal and palmar aspect dimensions of hand anthropometry for designing hand tools and protections”, Hum Factor Ergon Man, vol. 28, n.º 1, pp. 17-28, en. 2018, doi: 10.1002/hfm.20714.
B. Forero, K. Velásquez, R. Hernández y E. Mejía, “Simulation of transradial prosthesis using Virtual Reality Environment and electrooculography (EOG) signals for grip therapy”, Vis. Electron., vol. 16, n.º 2, pp. 17-28, ag. 2022, doi: 10.14483/issn.2248-4728.
C. Bell, 3D Printing with Delta Printers. Berkeley, CA: Apress, 2015, doi: 10.1007/978-1-4842-1173-1.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Paola Lizeth Orquiz Avila, Erika Guadalupe Meraz Tena, José Ricardo Oropeza Casillas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Todos los contenidos de CULCYT se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento-No Comercial 4.0 Internacional” (CC-BY-NC). Puede consultar desde aquí la versión informativa de la licencia.
Los autores/as que soliciten publicar en esta revista, aceptan los términos siguientes: a) los/las autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra; y b) se permite y recomienda a los/las autores/as agregar enlaces de sus artículos en CULCYT en la página web de su institución o en la personal, debido a que ello puede generar intercambios interesantes y aumentar las citas de su obra publicada.