
RE
SE

A
RC

H
 A

R
TI

C
LE

ISSN (electronic) 2007-0411

CULCYT. Cultura Científica y Tecnológica
Vol. 22 | No. 3 | September-December 2025 | PP 14-33

e22302
DOI: 10.20983/culcyt.2025.3.2.2

Corresponding author:
NAME: Edgar Rangel Lugo
INSTITUTION: Tecnológico Nacional de México/ Instituto Tecno-
lógico de Ciudad Altamirano
ADDRESS: Av. Pungarabato oriente s/n, col. Morelos. C. P.
40660, Ciudad Altamirano, Guerrero, México
E-MAIL: erangel_lugo@hotmail.com

Received: 29 September 2025. Accepted: 8 December 2025.
Published: 31 December 2025.

ChaCha20 Encryption Algorithm Security Enhancement through
Artificial Intelligence-Based Random Noisy Injection: A Case Study
Inyección de ruido con inteligencia artificial para mejorar la seguridad de datos: Un
caso de estudio del algoritmo ChaCha20
Edgar Rangel Lugo1a * , Kevin Uriel Rangel Ríos1a , Leonel González Vidales1a , Carlos Alberto Bernal
Beltrán1c , Cinthya Maybeth Rangel Ríos1a , Rosa Isabel Reynoso Andrés1b , César del Ángel Rodríguez
Torres1a , Lucero de Jesús Ascencio Antúnez1a

1	a{Departamento de Sistemas y Computación}, b{Departamento de Desarrollo Académico}, c{Subdirección Académica},
Tecnológico Nacional de México / Instituto Tecnológico de Ciudad Altamirano, Guerrero, México

ABSTRACT

The problem of digital data theft is receiving growing attention in organizations because it may produce significant finan-
cial losses. This issue can be handled using dynamic encryption methodologies. There exists safety encryption alterna-
tives such as AES (Advanced Encryption Standard) and RSA (Rivest-Shamir-Adleman). However, it is known that these
algorithms have been threatened by quantum computing advent. Thereby, the aim of this research is to suggest novel
dynamic encryption alternatives using artificial intelligence (AI), based on a noisy injection scheme on ciphertext, as it
has the potential to mislead cybercriminals. Several aspects related to this subject were studied. Despite that quantum
computing was not used, other measures have been proposed. The designed methodology was focused over the updating
of ChaCha20 strategy combined with random Caesar II methodology. This fusion of techniques, referred to as random
noisy ChaCha20, is suggested for increasing ciphertext security. Our novel proposal was compared with other random
noisy alternatives such as random noisy DES, random noisy 3DES, random noisy AES-256, and random noisy Blowfish.
The obtained results were dynamic ciphertext outputs. These schemes are limited to the ASCII table values. In conclu-
sion, the suggested alternatives presented here may be difficult for cybercriminals to decrypt.

KEYWORDS: applications of AI; cryptography; dynamic encryption methods; noisy injection strategies.

RESUMEN

El problema de robo digital de datos en las organizaciones está recibiendo gran atención porque puede ocasionar pérdidas
financieras. Este problema se puede amortiguar usando métodos de cifrado dinámico. Existen alternativas seguras para el
cifrado de datos, tales como AES (Advanced Encryption Standard) y RSA (Rivest-Shamir-Adleman). Sin embargo, es sa-
bido que dichos algoritmos se encuentran amenazados por la llegada de la computación cuántica. Por lo tanto, el objetivo
de esta investigación es recomendar alternativas para encriptado dinámico con inyección de ruido, usando inteligencia ar-
tificial (IA), porque ello puede confundir a los ciberdelincuentes. Se estudian aspectos relacionados y aunque no se utiliza
computación cuántica, se proponen algunas medidas. El diseño de la metodología consiste en la adaptación del algoritmo
ChaCha20, combinado con el método random Caesar II (fusión que ha sido denominada: random noisy ChaCha20), con
el propósito de incrementar la seguridad de los textos cifrados. Este nuevo esquema es comparado con otras alternativas
aleatorias ruidosas, tales como random noisy DES, random noisy 3DES, random noisy AES-256 y random noisy Blowfish,
obteniendo como resultado textos cifrados dinámicos, aunque limitados por valores de la tabla ASCII. En conclusión, las
nuevas propuestas podrían ser difícil descifrar para los cibercriminales.

PALABRAS CLAVE: aplicaciones de IA; criptografía; cifrado de datos dinámico; cifrado con inyección de ruido.

P E E R
REVIEWED

Creative Commons License

https://doi.org/10.20983/culcyt.2025.3.2.2
https://orcid.org/0000-0002-9611-8323
https://orcid.org/0009-0001-7029-7183
https://orcid.org/0000-0002-2623-7626
https://orcid.org/0009-0009-3244-8268
https://orcid.org/0009-0007-3503-5157
https://orcid.org/0009-0001-8896-8328
https://orcid.org/0000-0001-9198-4372
https://orcid.org/0009-0008-0923-4707

DOI: 10.20983/culcyt.2025.3.2.2

15CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

I. INTRODUCTION

A cybersecurity strategy [1]-[3] is considered inadequate
if at least one of the methods is vulnerable to cybercrim-
inal attacks [4]-[8]. This situation can produce the theft of
digital data [8]-[9]. When it occurs in practical domains,
it may cause significant losses in the finances of orga-
nizations [4]-[5], [8], [10]-[11]. Most of these cases [12]-[17]

refer to fraudulent telephone calls or phishing, social
networking platforms, bank systems, large markets or
retail supply chains, electrical energy network business,
detecting of fraudulent financial on sector situations,
and several cases of e-commerce in organizations [4]-[5].

Several proposals have been developed for combating
the theft of digital data. These strategies can be classified
into three main approaches: updating cybersecurity
strategies [4] on a regular basis, implementing dynam-
ic encryption methods [5], and using noisy injection on
ciphertext [5]-[7], [9]-[10]. This scheme has demonstrated
potential in certain practical domains.

This research focuses on encryption methods [8] that
utilize noisy injection strategies [5]-[7]. By computing
mathematical equations or statistics, plaintext (Si) is
transformed into ciphertext (Ci) [8], which can only be
accessed by authorized parties [10]-[11]. The Si denotes
the original input sequence, and the Ci is the encrypt-
ed output. When encryption method produces distinct
results with the same plaintext input is considered dy-
namic, whereas static encryption schema yields the
same result every time [8].

These algorithms can be classified as symmetric, where
a single secret key is used, or asymmetric, where a pair
of keys (private and public) are employed [8].

The process of translating plaintext into ciphertext is
known as data encryption, and the inverse process is
called data decryption [8]-[10], [14], [18].

Asymmetric encryption algorithms, including RSA
(Rivest-Shamir-Adleman) [3], [5]-[6], [8], [13]-[14], [19]-[27],
ECC [5]-[6], [8], [19]-[23], [28]-[31], and ElGamal [13], [19]-[21],
require both private and public keys to operate. Recent
research [5], [8], [11] have reported dynamic encryption re-
sults when these asymmetric alternatives were employed.

In this work, the asymmetric algorithms have not been
experimented because it can be considered a future

work. Therefore, these schemes are not described in this
research.

On the other hand, there exists also various symmet-
ric key cryptography algorithms, such as DES (Data
Encryption Standard) [3], [13]-[14], [22]-[23], [27], [32]-[33],
TripleDES or 3DES (Triple Data Encryption Standard)
[14], [21]-[23], [34], Blowfish [22]-[23], [35]-[38], ChaCha20 [38]-
[39], and AES (Advanced Encryption Standard) [13], [21]-
[23], [26]-[27], [40]-[41], to name a few. In case of the AES
scheme, in this research AES-256 version [38], [40]-[41]
has been employed.

According to reference [22], AES is a symmetric block
cipher that can operate with varying block sizes and
supports key lengths of 128, 192, and 256 bits. However,
DES encrypts 64 bits of plaintext into 64 bits of cipher-
text, employing substitution and permutation tech-
niques through a series of rounds, and decryption is
performed by reversing the process. Besides, the em-
ployment of 64 bits, it is considered insufficient for se-
cure environments, making it relatively easy to break.
As a result, the 3DES was developed as an enhancement
to DES. Blowfish is a symmetric algorithm that uses a
variable-length block cipher, supporting key lengths
between 32 and 448 bits [22]-[23]. Similarly, Blowfish is
commonly implemented with a 64-bit block size.

On the other hand, ChaCha20 [39] is a symmetric algo-
rithm that succeeds Salsa20 and it is built on the ARX
cryptographic primitive. ChaCha20's keystream gener-
ation algorithm consists of three operations: addition
modulo 232, constant distance left bit rotation, and bit-
wise XOR operation. These operations allow ChaCha20
to achieve high speed and security. ChaCha20 takes a
128-bit or 256-bit key, a nonce, and a 128-bit constant
to produce a 512-bit keystream. ChaCha20 introduces
a slight modification to its internal state matrix, making
it more resistant to certain types of attacks and often
faster in software implementations.

The experimentation with the Salsa20 algorithm is be-
yond the scope of this research and may be pursued in
future work.

In this context, some research [5], [8] have revealed that
symmetric encryption algorithms can generate static ci-
phertext outputs. It does not mean that these schemes
are vulnerable [5].

https://doi.org/10.20983/culcyt.2025.3.2.2

DOI: 10.20983/culcyt.2025.3.2.2

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

16CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

However, there exists some standard encryption alterna-
tives that they have been threatened by quantum comput-
ing [8], [22]-[23], [42]. In contrast, other researchers [43]-[45]
caution that the AES and RSA algorithms are also vulner-
able to the emergence of quantum computing [8], [22], [42].

Several aspects of this topic are examined in this pa-
per. However, a quantum computing alternative has not
been employed, as other measures are proposed here,
which are applied to variants of symmetric algorithms
[5]. In this context, the implementation of a noisy in-
jection strategy [5]-[7] is also highly recommended for
enhancing encryption security.

Noisy injection involves the addition of characters from
ASCII or UTF-8 encoding to a plaintext or ciphertext
that exceed the original input message, introducing ex-
traneous elements [8].

One of the hypotheses explored in this paper is that
noisy random strategies have the potential to mislead
cybercriminals [5], [8]. These noisy injection strategies
[5]-[7] often rely on artificial intelligence (AI) [5]-[8], [10]-
[11], [46]-[47], given the existence of AI-based cryptogra-
phy [1]-[4], [8], [10]-[11], [16]-[17], [24], [48]-[50].

References [10], [46]-[47] mention that AI's purpose is
to make the machine think [8]. In this regarding, the
heuristic methods [5], [8], [10] can help us, because these
methodologies consist in a previously defined set of
rules for solving a problem. They can be used for imple-
mentation of structured models such as decision tree
[51]-[53], graphs [53]-[55], to mention few.

Furthermore, random methods in AI [10], [56]-[59] in-
volve selecting numbers randomly, either with or with-
out replacement [8]. These techniques can be applied to
intelligent models like genetic algorithms (GAs) [1]-[2],
[9]-[10], [16]-[17], [56], [59]-[62], Monte Carlo (MC) algorithms
[59], and artificial neural networks [57], [63]-[64], and other
applications [65]-[68]. Several authors have explored AI-
based cryptography alternatives [1]-[4], [8], [10]-[11], [14],
[16]-[17], [24], [27], [48]-[50], [60]-[62]. These schemes include
random noisy strategies that were tested [4], [9]-[11] on
different platforms, including Microsoft Windows [69]
with Python 3 [70], and Android [71] with PyDroid3 [72],
using various Python libraries [73]-[75].

For a comprehensive overview of cryptography with AI,
see [50]. Reference [48] analyzes the application of GA in

the determination of efficient parameters for a specific
model of pseudorandom number generators, known as
Congruent Linear Generators (CLGs), while [3] focuses
on asymmetric and symmetric cryptographic methods.

In [58], a study on pairing functions for AI-driven cryp-
tography was conducted. Subsequently, the same au-
thor [16] have published a novel investigation on GAs
in cryptography, specifically contributing to the field of
e-commerce [16]. Another research [24] highlights a re-
view of side channel attacks and countermeasures on
ECC, RSA, and AES cryptosystems. In reference [49], a
survey trends in lattice-based cryptographic schemes is
presented, including some recent fundamental propos-
als for the use of lattices in computer security, challeng-
es for their implementation in software and hardware,
and emerging needs for their adoption.

Following conventional methodologies, some studies
[1], [62] have investigated the application of genetic algo-
rithms in cryptography. Additionally, reference [60] has
presented an advanced optimization algorithm tailored
for cryptanalysis. On the flip side in [61] reveals that genet-
ic algorithms can successfully break certain simple cryp-
tographic ciphers. In [27], a similar vein is examined the
application of genetic operators to symmetric cryptog-
raphy using GAs. Moreover, [49] introduces a post-quan-
tum lattice-based cryptography implementations.

Noisy injection strategies [4]-[11] encompass multiple ap-
proaches that they can be classified into three distinct
categories.

Firstly, the use of pseudo-hexadecimal format is consid-
ered. In this regard, the 'Noised' random pseudo-hexadec-
imal GAs methodology has been detailed in [9]-[10]. This
scheme, based on a genetic algorithm was introduced as a
dynamic encryption solution. However, due to the report-
ed disadvantages of pseudo-hexadecimal GAs, a successor
was presented in [10], known as "Noised" random pseu-
do-hexadecimal (without GAs). In [8], four dynamic al-
ternatives based on the pseudo-hexadecimal scheme were
introduced, termed "noisy random pseudo-hexadecimal"
strategies. These strategies involve injecting noise into
ASCII characters to confuse cybercriminals when a new
pseudo-hexadecimal format has been recommended. The
application of these schemes is restricted to plaintext.

The second category includes the use of AI-based noisy
injection paired with the 1-NN rule, as referenced in

https://doi.org/10.20983/culcyt.2025.3.2.2

DOI: 10.20983/culcyt.2025.3.2.2

17CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

[46]-[47], [65]-[67]. In this regard, the 'Noised' random 1-NN
with hexadecimal encoding based on AI has been in-
troduced in [11]. Similarly, the combination of "Noised"
random pseudo-hexadecimal format with 1-NN rule
was explored in [68]. Both methodologies have revealed
that these schemes can increase the safety of digital data
with double noisy injection over ciphertext outputs.
Even though it will have to sacrifice disk storage space.
These strategies were also applied to plaintext. In this
study, the pseudo-hexadecimal schemes were not ex-
plored, but it may be considered for future research.

In this context, random Caesar II mod 120 [4]-[7], [11] was
employed in the third category for noisy injection over
plaintext [4]-[5], [11], as well as being applied on cipher-
text [5]-[7], which it is generated by standard encryption
algorithms. This approach is termed a random noisy
strategy [5]-[7].

Some studies [4]-[11] indicate that dynamic encryption
methodologies based on random noisy schemes can
increase the security of ciphertext outputs by adding
noise and redundancy [5], [9]-[10]. In AI-based practical
domains [46]-[47], [55]-[56], [63], [65]-[67], the presence of in-
complete or noisy patterns [76]-[77] can reduce the sys-
tems' global accuracy [66]. Hence, the noisy injection
alternative is considered a good indicator because it can
mislead cybercriminals.

In contrast to the traditional Caesar algorithm [4], [9],
[13]-[14], the random Caesar cipher is distinguished by
its use of dynamic encryption with AI, as noted in ref-
erence [5], which it emphasizes its use of heuristic meth-
ods. While the traditional Caesar cipher relies on a fixed
shifting value K, as expressed in equation (1), in refer-
ences [13]-[14]:

Ci = Si + K mod 26 (1)

In this situation, the random Caesar cipher utilizes
varying shifting values (Ki) for each character Si, cho-
sen randomly with replacement.

Random Caesar's mode of operation is determined by
the N value in the terms of equation (2):

Ci = Si + Ki mod 26 (2)

Unlike the traditional Caesar cipher, which uses mod
26 and is limited to 26 characters, the random Caesar

cipher offers more flexibility. Hence, the mod N in ran-
dom Caesar method is potentially dynamic. It uses an
initial AI-based learning phase [8]-[10] that is recom-
mended for selecting alphabet, but it has been narrowed
down to three modes in recent research [4], [6], [9], [11],
including the random Caesar I (with mod 9 and mod
255) [6], random Caesar II with mod 95 [4], [9], [11], and
random Caesar II with mod 120 [4]-[7]. In these terms,
the mod N value determines the size of the encryption
alphabet and the maximum value in the Ki vector. For
N = 95, the range is 32 to 126, encompassing characters
like space and '~'. The N = 120 value, it spans 30 to 150.
Any other N value means Ki is between 0 and N. These
values are not ordered according to their ASCII code
(ordinal) because they have been selected randomly.

The schemes outline the rules for selecting alphabets
based on random principles and the use of a heuristic
methods to derive the best Ki vector. This situation as
well as the use of AI have already been discussed in oth-
er studies [4]-[11], [68]. However, it is explained below.

The random Caesar schema's second phase is designed
to confuse cybercriminals [4], and involves calculating
the final package using the equation (3), in reference [5]:

FinalPackage = Ci & Ki & OrdChr(Ci) (3)

The & operator denotes the concatenation function, and
the OrdChr procedure appends the same character of
Ci to the end of the package when operating in N = 120
mode. In other cases, OrdChr converts Ci to its ordinal
value.

This methodology is specifically designed for plaintext
encryption as a dynamic approach [4], whereas studies
[5]-[7] have incorporated the random Caesar II mod 120
as a random noisy strategy. Eight random noisy encryp-
tion methods are described in [5], including: random
noisy DES, random noisy 3DES, random noisy RC4,
random noisy Blowfish, random noisy WEP, random
noisy AES, random noisy RSA-2048, and random noisy
ECIES SECP-256-R1. These proposals combine stan-
dard encryption algorithms with the addition of noisy
injection through random Caesar II mod 120.

The concept of random noisy GOST was explored in [6],
and the random noisy Camellia was highlighted in [7].
Variants of random noisy strategies [4] that incorporate
noisy injection have been reported to effectively cam-

https://doi.org/10.20983/culcyt.2025.3.2.2

DOI: 10.20983/culcyt.2025.3.2.2

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

18CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

ouflage ciphertext [5]. Examples include reduced ran-
dom Caesar [4]-[5] and reduced random mutation [4].

The main objective of these schemes, as outlined in
reference [4], consists into camouflage and compress at
least ⅓ of the ciphertext. The reduced random Caesar
strategy has been applied on plaintext [4] and ciphertext
[5]. In case of the reduced random mutation [4] has only
been employed using plaintext.

We did not experiment with these reduced random and
mutation strategies here, as they may be addressed in
future work.

In this work, only four random noisy strategies based
on standard symmetric encryption algorithms have
been evaluated, including random noisy DES, random
noisy 3DES, random noisy AES-256, and random noisy
Blowfish. Similarly, a new alternative was developed
and it is introduced here as random noisy ChaCha20.

Noisy injection scheme based on random noisy strate-
gies [4]-[7] can be applied to plaintext [4] or ciphertext [5]-
[7]. They are recommended due to its strong correlation
with dynamic encryption performance. The impact of
quantum computing on the security of these schemes
has not been studied here [5], [8].

In this context, random noisy strategies have been rarely
explored in the literature. As a result, the vulnerabilities
of these schemes have not been thoroughly investigat-
ed. However, there exist some dynamic encryption ap-
proaches that employ asymmetric algorithms [3], [24], [26],
[28]-[29], [43]-[44], pseudorandom number generation [40],
chaotic maps [18], optical pattern recognition [15], algo-
rithms based on mutation procedures [4], [59], genetic al-
gorithms [1]-[2], [8]-[10], [16], [27], [56], [58], [62], cryptography
based on heuristic methods [54], and pseudo-hexadec-
imal encoding [8]-[10]. These heuristic pseudo-hexa-
decimal approaches have inspired the development of
our proposed random noisy ChaCha20, as its learning
phase is derived from these existing schemes but ex-
cluding pseudo-hexadecimal encoding.

Given that random noisy strategies have shown promise,
this research continues the work of [5]-[7], by examining
the ChaCha20 encryption algorithm's potential when it is
applied to ciphertext, a gap in existing research that could
benefit organizations employing ChaCha20. Besides,
this situation opens opportunities to the organizations,

regarding the employment of noisy injection based on
ChaCha20 scheme. We focus on cybersecurity strategies
that utilize noisy random encryption methodologies, spe-
cifically exploring the application of noisy injection on
ciphertext generated by standard encryption algorithms
with the purpose of misleading cybercriminals [8].

The scope of this study was limited to two classes of sit-
uations.

First, we compared five standard encryption algorithms
(DES, 3DES, AES-256, Blowfish, and ChaCha20) as
static encryption schemes for benchmarking against
other research findings [5]-[7].

The random noisy ChaCha20 scheme was also imple-
mented as a new method for comparison with other
strategies like random noisy DES, random noisy 3DES,
random noisy AES-256, and random noisy Blowfish,
which were evaluated for their effectiveness in noisy in-
jection over ciphertext.

These strategies involve using random Caesar II mod
120 [4], being applied to ciphertext previously encrypted
with a standard algorithm. Both objectives here focus
on dynamic encryption as an alternative for random
performance.

This study adds to the empirical foundation of AI-based
cryptography, particularly since random noisy strate-
gies have been rarely studied.

Recent research [4]-[5], [9]-[11] have noted that the ran-
dom Caesar II method with mod 255 [4] can produce
ciphertext values outside the ASCII table range [5].
However, in practical domains where random noisy
strategies were employed [5], these issues have not been
encountered.

The random noisy encryption strategies were previous-
ly assessed with five-fold cross-validation [5]-[7]. This
work expresses their performance in terms of average
or global accuracy [46]-[47], [65]-[66]. Here, we report on
the experimental results of an extensive investigation
into digital data theft cases. This study examined sit-
uations where the use of at least one inadequate static
encryption method led to vulnerabilities [5].

Initially, the experiments were focused on replacing of
the static encryption scheme for recommending the

https://doi.org/10.20983/culcyt.2025.3.2.2

DOI: 10.20983/culcyt.2025.3.2.2

19CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

random noisy strategies as dynamic encryption alterna-
tive [4]. Moreover, examples of ciphertexts produced by
random noisy encryption schemes, they are included in
this research.

The assessment of these approaches involved five sam-
ples and a modified cross-validation method [4]-[5], [10].
Furthermore, the application of noisy injection on ci-
phertext output is suggested as it proves to be a reliable
indicator of dynamic encryption efficacy.

Besides, a novel approach named here as random noisy
ChaCha20 strategy is proposed as a dynamic encryp-
tion alternative. The results are also compared against
four random noisy schemes based on the DES, 3DES,
AES-256, and Blowfish algorithms.

II. METHODOLOGY

The use of static encryption algorithms as a replace-
ment for existing cybersecurity strategies does not en-
sure the data protection for organizations. Reference [4],
dynamic encryption approaches are suggested instead.
This study examines the effectiveness of dynamic en-
cryption measures based on random noisy strategies [5],
in preventing digital data theft.

This research is considered experimental and explor-
atory because a novel random noisy ChaCha20 alterna-
tive is introduced here for the first time.

This work required the use of hardware, software, and
datasets. The experiments were conducted on a person-
al computer with a 2 GHz CPU, 4 GB of RAM, and 32
GB of free disk space. The software implementation of
these encryption methods, including DES, 3DES, AES-
256, Blowfish, and ChaCha20, as well as, the novel vari-
ants based on random noisy strategies [5] was carried
out using Microsoft Windows 10 [69] and Python [70].

To compare our results with those in [5]-[7], we repeat-
ed some experiments on a mobile computing device
with the same hardware features as the personal com-
puter mentioned earlier, but with Android 9 [71], as
the operating system and PyDroid3 [72], for software
development. Our experiments showed no significant
differences.

Our datasets are training samples (TS) [6]-[7], [46]-[47], [65]
with 1000 exemplars, being selected randomly. Each

row in the dataset is a pattern with five columns or fea-
tures.

This data comprises encryption and decryption details,
including ciphertext (Ci) represented as a pair (Test1,
Test2), as well as encryption time (TC), decryption
time (TD), error rate (Error), and class label. Specifically,
the pattern is structured as TP = [(Test1, Test2),
TC, TD, Error, Label], enabling comparison with
other research findings [7]. In Table 1, two ciphertext
examples are shown (Test1 and Test2). The Label or
plaintext (Si) sequences include the noisy characters,
which were represented in Python as follows:

Si = ''.join([chr(9619),'W','e','l','c','o',
'm','e',chr(9619),chr(65533)])#'▓Welcome▓?'

This Label feature represents the plaintext (Si), simu-
lating a password with added noise characters (i.e. the
ordinals 9619 and 65533 values).

Encryption and decryption times were calculated in
milliseconds, while the TC, TD, and Error features were
represented as double precision values.

The encryption strategy transforms the plaintext se-
quence into a ciphertext result, structured as a tuple
(Test1, Test2), while computing TC, enabling the ob-
servation of dynamic encryption results. The ciphertext
sequence is decrypted while TD is calculated. Both se-
quences are stored in TS, with their TD, TC, and Error
rates included in a structured pattern format.

This error rate is calculated according to the number
of characters that they are incorrect. If the encryption
strategy's output ciphertext, it does not match the plain-
text (Si), the error rate is determined by the extent of
the errors within Si. In this context, if a ciphertext
of eight characters corresponds to a plaintext of eight
characters and has an error value of 0.5, it indicates
that four characters from Test1 and/or Test2 have not
been decrypted correctly.

The ciphertext and plaintext are sequences of characters
in ASCII or UTF-8 encoding, with a maximum length
of 255 characters. Unlike other algorithms, 3DES and
Blowfish have limitations in processing block sizes,
which limited the experiments with Blowfish to a block
size of 13 characters and 3DES to a block size of 22 char-
acters. The selected plaintext sequences in our experi-

https://doi.org/10.20983/culcyt.2025.3.2.2

DOI: 10.20983/culcyt.2025.3.2.2

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

20CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

ments are intended to simulate passwords. In real-world
applications, passwords are typically recommended to
have a length between 8 and 16 characters. In our exper-
iments, we were able to simulate passwords of up to 255
characters in length. However, we encountered an issue
with the Python 3 libraries used for Blowfish and 3DES
encryption, which truncated the plaintext sequences to
13 and 22 characters, respectively. To address this issue,
we performed piecewise encryption of the plaintext in
blocks of 13 and 22 characters for Blowfish and 3DES,
respectively, allowing us to evaluate the algorithms on a
more equitable basis.

Another alternative for addressing this disparity, the
research employed ciphertexts filled with random hexa-

decimal values to ensure a more equitable comparison.
All this information has been used for converting it in
new format based on cross-validation modification [4]-
[7]. This updated TS format was employed in each en-
cryption strategy, separately.

For improving the results understanding, in Table 1, the
arithmetic mean and its standard deviation are shown,
using a plaintext values as above mentioned.

Finally, the plaintexts were processed separately with
the encryption algorithms, using the test set (TS) cre-
ated for each algorithm, including those with random
noisy strategies, under equal terms.

TABLE 1
 Encryption and Decryption Times with Error Estimates

Encryption
method TC TD Error Test 1 Test 2

DES 1.14
(0.5087)

0.19
(0.0187)

1 (0) d 5 3 5 c 3 3 7 b e 1 d 9 4 d b 5 b 9 4 0 b 7 5 b c e 1 2 4 d c d a
9 3 f f a 3 5 7 9 1 b f 0 7

d 5 3 5 c 3 3 7 b e 1 d 9 4 d b 5 b 9 4 0 b 7 5 b c e 1 2 4 d c d a
9 3 f f a 3 5 7 9 1 b f 0 7

ChaCha20 7.03
(3.6519)

0.39
(0.0118)

0 (0) e 1 e 3 a 0 b a 1 0 4 d 5 8 0 f f 5 1 b a 4 2 c f 6 4 d 7 f 6 a 1 d e 1 e 3 a 0 b a 1 0 4 d 5 8 0 f f 5 1 b a 4 2 c f 6 4 d 7 f 6 a 1 d

AES-256 7.31
(3.7093)

0.61
(0.0169)

0 (0) 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 1 9
4 2 1 7 8 0 f c 4 0 c 5 9 f 1 4 7 9 6 a 5 9 8 1 1 5 d 8 e 5 1 3 9 f

6 f 9 6 6 6 f 6 7 c b 3 0 f c d a 0 1 f 2 2 7 3 9 e e d a

3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 1 9
4 2 1 7 8 0 f c 4 0 c 5 9 f 1 4 7 9 6 a 5 9 8 1 1 5 d 8 e 5 1 3 9 f

6 f 9 6 6 6 f 6 7 c b 3 0 f c d a 0 1 f 2 2 7 3 9 e e d a
Blowfish 7.55

(3.7931)
0.64

(0.0373)
0 (0) 4af747eaabe473251f42200cf8fda7f2 4 a f 7 4 7 e a a b e 4 7 3 2 5 1 f 4 2 2 0 0 c f 8 f d a 7 f 2

3DES 7.68
(3.9388)

0.50
(0.0184)

0 (0) d 5 3 5 c 3 3 7 b e 1 d 9 4 d b 5 b 9 4 0 b 7 5 b c e 1 2 4 d c
6 2 0 c 5 1 e 2 3 8 0 a 3 d 5 c

d 5 3 5 c 3 3 7 b e 1 d 9 4 d b 5 b 9 4 0 b 7 5 b c e 1 2 4 d c
6 2 0 c 5 1 e 2 3 8 0 a 3 d 5 c

random noisy
DES

1.63
(0.4897)

0.58
(0.0389)

1 (0) Ï k Ï j 5 j ‪ [‪ ¡ l ¡ Í j Í — d ‪ ‪ h › u > u ¿] ¿ ‪ + ‪ ‪ Q ‚ ¿ [¿
¥ l ¥‪ l‪ ‘ - ‘ í ‹ í ‪ [‪ Ô r Ô º ‪ º › g ‪ ‪ P ‪ Ù w Ù „ M „ t
? t Ã a Ã ‪ ; ‪ ¢ = ¢ t C t b 0 b V " V ́ P ́ ã ‪ ã ‪ * ‪ ã ‚ ã i 0
i w D w ó ‪ ó ³ M ³ î ‪ î · „ · ‰ T ‰ { D‪ { Š Q Š P P © G

© ¾ X ¾ Œ \ ‪ ‪ U Œ

 Û w Û ¼ ‡ ¼ ̂ U ̂ ¬ w ¬ º W º ¦ s ¦ u B u l 5 l ‘ / ‘ ó ‪ ó ½ Œ ½
µ Q µ š a š X $ X î Š î í ‹ í š e š ¼ Z ¼ š a š _ + _ i 9 i œ : œ « t «
y D y ® L ® à } à À [À Ÿ n Ÿ s A s … Q … Ü x Ü “ 0 “ ª F ª
 ̈G ̈ Ë ’ Ë ‪ j ‪ ³ M ³ ë … ë » Z » ‪ [‪ º … º ¿ ̂ ¿ q 8 q ́ ƒ ́ ́

R ́ Ð j Ð P‪ P ‪ g ‪
random noisy

ChaCha20
7.72

(3.7983)
0.74

(0.0171)
0 (0) ª E ª W & W ² M ² h 5 h ‪ ‪‪ }‪ ‡ % ‡ ¡ @ ¡ ‪ _ ‪ ̈ x ̈ “

_ ‪ ‪ 2 – t ? t‪ u‪ ¿ ‪ ¿ ¢ < ¢ œ 6 ‪ ‪ j Ÿ i 8 i µ S µ ‹ * ‹
« w « h 6 h ê ‡ ê æ ‪ æ ¹ ƒ ¹ ‪ \ ‪ ½ Y ½ ‪ g ‪ Ì f Ì § q § ¶

U ¶ ‡ V ‡ Ù u Ù

¡ < ¡ O O è ƒ è T ! T ¦ E ¦ c 3 c ± O ±‪ ?‪ ̈ w ̈ ̧ ̂ ̧ ¦ r ¦ ‪ 9 ‪ ¶
‪ ¶ ¡ i ¡ ‪ ̂ ‪ § A § Ç a Ç j 5 j { J { ‘ / ‘ õ ” õ ¿ ‹ ¿ š h ‪ ‪ * ‪
ð Š ð Ê ” Ê b . b Õ q Õ y B y ‰ # ‰ ̧ ‚ ̧ ́ S ́ À ‪ À ‪ * ‪

random noisy
3DES

8.45
(4.1892)

0.67
(0.0179)

0 (0) è „ è ̈ s ̈ ̧ … ̧ ‪ h ‪ ö “ ö ¢ o ¢ ‡ T ‪ ‪ ̀ ‪ ‪ 4 – ¿ Z ¿ ¥ t
¥ « G « µ | µ Z & Z Î j Î ÷ • ÷ a , a î Œ î „ K ‪ ‪ S ‡ t D t Ï m Ï
½ † ½ ¶ ‪ ¶ ¦ D ¦ î ‹ î ³ N ³ c 2 c { I {‪ l‪ Ä ̀ Ä ¹ V ¹ Š T Š § u
§ S # S ª G ª · ‚ · § v § Î i Î ̀ . ̀ Á ‪ Á] %] Å • Å » Z » ‹ X ‹ Ô

p Ô Š U ‪ ‪ 8 ›

ä ‪ ä ‪ Z ‪ o < o ¾ ‰ ¾ ‪ : ‪ Æ “ Æ i 6 i x A x Ç e Ç ¢ =
¢ † U † Í i Í ° w ° ‪ Z ‪ ò ‪ ò » Y » ‹ V ‹ Ö t Ö | C | d 0 d j : j ̄
M ̄ h 1 h ¹ „ ¹ ± O ± ³ P ³ Å ̀ Å w F w X & X È ” È Ï k Ï ó ‪ ó
i 3 i [) [„ T „ å ‚ å X # X Œ [Œ ù ” ù ¹ ‡ ¹ Â ‪ Â W W ” d ” ò ‘

ò Š W Š ± M ± T T É f É
random noisy

AES-256
8.46

(3.9351)
1.00

(0.0119)
0 (0) y F y ½ ‪ ½ j 7 j j : j ¹ † ¹ † V † m « { « ̃ e ̃ m = m b / b q A q ‪

M ‪ ³ ƒ ³ c 0 c ‪ P ‪ b / b … U …] *] ¾ ‪ ¾ Ç ” Ç x H x º
‡ º ̂ X ‪ ‪ ̀ “ d 4 d Å ’ Å „ T ‪ ‪ f ™ \ , \ p = p ƒ R ‪ ‪ N ‪
‪ M ‪ ‪ S … q @ q U U › c › f 6 f £ = £ — 4 — R R \ , \ Õ
r Õ y D y z A z ‹ % ‪ ‪ S „ ¡ m ¡ · ‪ · µ | µ ¤ n ¤ ¢ A ¢ ² } ² „ K
„ e - e • d • X ' X u @ u Ï k Ï † N ‪ ‪ " ‡ _ * _ ‪ _ ‪ z G z o 6
o ̧ R ̧ W ! W õ ‪ õ Ë ’ Ë ¢‪ l ¢ † P ‪ ‪ b ̃ ¢ < ¢ ̄ y ̄ a * a ±
N ± — 5 — x E x ‪ _ ‪ ‪) ‪ ‪ $ ‡ ñ ‪ ñ ß ~ ß X (X ‰ X
‰ ¹ S ¹ © w © ¿ ‪ ¿ Y " Y q > q j 1 j œ 7 œ Û v Û Ä ̀ Ä É h É

Z ' Z | L | Q Q ‪ Q ‪ ¡ n ¡ ƒ S ‪ ‪ ̂ ‘ ¹ ‰ ¹ s @ s] -] T ! T Å •
Å ̀ - ̀ § w § Š W Š ¬ | ¬ ‹ X ‹ ³ ƒ ³ Æ “ Æ ± ‪ ± Y & Y b 2 b ±
~ ± … U �‪ ‪ R �‪ ‪ R ‚ \) \ ° ‪ ° œ i œ ̀ 0 ̀ £ p £ ̂ - ̂ ‹ R ‹ h
4 h µ ƒ µ Ä “ Ä Ã Œ Ã b * b § w § Ü v Ü Â _ Â ́ ‪ ́ … U ‪
‪ 0 ‪ ‪ L ‪ X X µ O µ } L } Ÿ k Ÿ ¼ … ¼ † M ‪ ‪ _ • ³
R ³ k 6 k ‪ G ‪ ‪ b š ¦ u ¦ — f ‪ ‪ g œ ç ƒ ç ¾ † ¾ ¡ < ¡ k 6 k
ƒ R ƒ ½ Š ½ Ç ‪ Ç ¤ > ¤ Å ‪ Å Ó m Ó £ j £ ‪ h ‪ ‪ g ‪ ‪
J ‪ ‪ 9 Ÿ { E { i 2 i › 8 › > ‪ k ‪ y I y ‪ ' ‪ Ù v Ù ́ P ́ Š) Š ̂
. ̂ Š Y Š ́ N ́ ̂ V ̂ Â ‪ Â ̈ q ̈ T ! T š a š § B § ú • ú ° L ° ð ‪ ð

random noisy
Blowfish

7.85
(3.7619)

0.94
(0.0349)

0 (0) w C w ð ‪ ð ð Š ð ‪ H ‪ ” ̀ ”] &] • 0 • ï ‪ ï ̈ G ̈ Œ * Œ ô ‪
ô u A u ± z ± v C v T " T · ‚ · — f — ó ‪ ó š f š P P ¤ r ¤ ° ‪ ° µ
… µ ™ 6 ™ ¶ P‪ ¶ z B z š 4 š ô ‪ ô í Œ í † O † ® H ® ‪ k ‪

± } ± É h É ê „ ê z C z T‪ T Ë ” Ë ‘ , ‘ Â a Â ‘ 0 ‘ ¬ J ¬ … ‪
‪ O ƒ ¹ ‚ ¹ m Å “ Å W " W k : k ã } ã ‪ Z ‪ { I { » ‰ » r B r
¶ † ¶ Ü y Ü ¦ @ ¦ k 3 k á { á ¼ X ¼ ‘ 0 ‪ ‪ _ – Ö p Ö U # U

Average 6.48
(2.5856)

0.63
(0.2279)

0.2 (0.4000) - - - - - - - -

https://doi.org/10.20983/culcyt.2025.3.2.2

DOI: 10.20983/culcyt.2025.3.2.2

21CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

IMPLEMENTING STANDARD SYMMETRIC
ENCRYPTION ALGORITHMS

Experiments began by using standard symmetric encryp-
tion algorithms, such as DES, 3DES, AES-256, Blowfish,
and ChaCha20, as our primary strategy. They were exper-
imented as static encryption schemes being applied on
plaintext for results comparison with other research [5]-[7].

These experiments were run on five training samples
with the above-mentioned details, and each encryption
algorithm, it was assessed separately using a modified
cross-validation method [4]-[5]. These standard en-
cryption algorithms were implemented using Python
language [70]. For this it was necessary to install some
package or libraries such as cryptography [73], pycrypt-
odome [74]-[75], [76], and pycrypto/pycryptor. Therefore,
it needs to be imported into the source code and the Si
values must be initialized as follows:

from cryptography.hazmat.primitives import
padding

from cryptography.hazmat.primitives.ciphers
import Cipher, algorithms, modes

from cryptography.hazmat.backends import
default_backend, from Crypto.Cipher import
DES

Si = ''.join([chr(9619), 'W', 'e', 'l', 'c',
'o', 'm', 'e', chr(9619), chr(65533)])

Given that Si was saved, we can proceed with the anal-
ysis. The ciphertext generated using the DES algorithm
can be obtained through the following operation:

C i = ((A (K e y . e n c o d e () , M o d e)) . e n c r y p t (p l a i n
t e x t)) . h e x () p r i n t (C i)

In the case of ciphertext produced by the 3DES and
Blowfish algorithms, the computation operation is:

Ci=(Ri.update(plaintext)+Ri.finalize()).hex()

print(Ci)

In the same way, the ciphertext for the AES-256 encryp-
tion alternative, it can be calculated as follows:

Ci=(IV.encode()+(Ri.update(plaintext)+
Ri.finalize())).hex()

print(Ci)

Below is the ciphertext obtained through the ChaCha20
algorithm:

Ci=(Ri.update(plaintext)+Ri.finalize()).hex()

print(Ci)

Here, the A component represents the algorithm used,
while the encoded Key parameter is the secret key. The
IV value is the initialization vector, while that the Mode
argument specifies a valid operation mode for the al-
gorithm, and the Nonce refers to the ChaCha20 nonce
value that it was employed. The plaintext argument is
the encoded Si, and the encrypt() procedure returns
a ciphertext object, which is a class component. In this
context, N is the maximum byte length of a character se-
quence. The Ri vector is a partial ciphertext object that
may not have padding or may be incomplete. The Qi
component is the padding applied. The updated() and
finalize() procedures are necessary to complete the
encryption process. Finally, the hex() function is used
to translate byte values into hexadecimal format. Based
on these terms, the computation of valid parameters for
the DES algorithm ciphertext generation is as follows:

Key = "00000001"

A = DES.new

N = 8

Mode = DES.MODE_ECB

plaintext=Si.encode()+(b"\x00"*(N–len(Si.
encode())%N))

The valid parameters for computing ciphertext with the
Blowfish algorithm can be obtained through:

Key = "00000001"

A = algorithms.Blowfish

N = 16

Mode = modes.ECB()

Ri=Cipher(A(Key.encode()),Mode,default_
backend()).encryptor()

plaintext=(Si+""+str("".join([" " for k
in range(0,int(N-len(Si.encode())))]))
).encode()

To produce ciphertext with 3DES, the valid values can
be obtained through:

https://doi.org/10.20983/culcyt.2025.3.2.2

DOI: 10.20983/culcyt.2025.3.2.2

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

22CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

Key = "000000000000000000000001"

A = algorithms.TripleDES

N = 24

Mode = modes.ECB()

Ri=Cipher(A(Key.encode()),Mode,default_
backend()).encryptor()

plaintext=(Si+""+str("".join([" " for k
in range(0,int(N-len(Si.encode())))]))
).encode()

The valid values for ciphertext generation using the
AES-256 encryption version are as follows:

Key = "00000000000000000000000000000001"

A = algorithms.AES ; N = 256

IV= "0000000000000001"

Mode = modes.CBC(IV.encode())

Ri=Cipher(A(Key.encode()),Mode,default_
backend()).encryptor()

Qi = padding.PKCS7(N).padder()

plaintext=Qi.update(Si.encode())+
Qi.finalize()

To obtain ciphertext using the ChaCha20 algorithm,
the valid values are:

Key = "00000000000000000000000000000001"

Nonce = "0000000000000001"

A = algorithms.ChaCha20 ; N = 32

Mode = None

plaintext = Si.encode()

Ri=Cipher(A(Key.encode(),Nonce.encode()),
mode=None,backend=default_backend()).
encryptor()

These statements should be added to the source code
before calling Ci, as necessary.

RANDOM NOISY ENCRYPTION STRATEGIES

A second approach to encryption involves the use of
random noisy alternatives [5], for dynamic data encryp-

tion. Reference [4] offers a promising way to increase the
noise in ciphertext outputs.

These strategies [5] have been applied to ciphertexts
generated by standard encryption algorithms, focus-
ing on four specific cases: random noisy DES, random
noisy 3DES, random noisy Blowfish, and random noisy
AES-256. Additionally, random noisy ChaCha20 is in-
troduced as a new proposal in this study.

The five random noisy strategies were developed in
Python [70] and evaluated using a noisy injection appli-
cation that applies random Caesar II mod 120 to the
ciphertext generated by each standard encryption al-
gorithm. The goal was to compare results with existing
research [5]-[7].

Each encryption algorithm was evaluated separately
on the five TS using an iterative process with five rep-
etitions of cross-validation [4]-[5]. We applied modified
cross-validation to calculate the global average and
standard deviation for each encryption strategy.

The novel proposals, as described in [5], involve noisy
injection into ciphertext, and the procedure for com-
puting random noisy strategies is detailed in [5]-[7] such
as follows:

R a n d o m N o i s y i = C h a r (O r d (S t a n d a r d E n
c r y p t i o n i) + O r d (K i)) & C h a r (K i) &
C h a r (S t a n d a r d E n c r y p t i o n i)

m o d 1 2 0

(4)

This calculation was optimized by substituting ci-
phertext for plaintext, as demonstrated in [4]. The cal-
culation is adjusted to mod 120 since only character
types are stored in RandomNoisyi (FinalPackage).
Several random noisy schemes have been presented
in previous work [5]. We employed four strategies for
obtaining StandardEncryptioni ciphertext in this
research.

The random noisy ChaCha20 approach was implement-
ed and computed as follows:

R a n d o m N o i s y C h a C h a 2 0 i = C h a r (O r d (S t
a n d a r d C h a C h a 2 0 E n c r y p t i o n i) + O r d (K i
)) & C h a r (K i) & C h a r (S t a n d a r d C h a C h
a 2 0 E n c r y p t i o n i)

m o d 1 2 0

(5)

https://doi.org/10.20983/culcyt.2025.3.2.2

DOI: 10.20983/culcyt.2025.3.2.2

23CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

In this context, the + operator is used for the shifting func-
tion, and the & operator is used for concatenation. The Ord
function maps a character or integer to its corresponding
ordinal value, while the Char function translates its argu-
ment into the corresponding ASCII or UTF-8 encoding.
The Ki vector contains the random (integer) shifting val-
ues. The StandardEncryptioni parameter represents
the ciphertext obtained from a standard encryption algo-
rithm (e.g., DES, 3DES, Blowfish, and AES-256), as de-
scribed in [5]. The StandardChaCha20Encryptioni
argument signifies the ciphertext resulting from the
ChaCha20 algorithm. These strategies were applied sepa-
rately. RandomNoisyi refers to the FinalPackage gen-
erated by applying a random noisy strategy, as mentioned
in [5]. On the other hand, RandomNoisyChaCha20i
represents the FinalPackage, resulting from the use of
random noisy ChaCha20.

The random noisy approaches involve a two-step pro-
cess: first, the standard encryption algorithm is applied
to the plaintext, and then random Caesar II mod 120 is
applied to the ciphertext generated in the first step [5]-[7].

As noted in [5], it's essential to distinguish this fusion of
techniques from double encryption using different algo-
rithms, which is not the focus of this research. Applying
multiple standard encryption algorithms sequentially could
introduce vulnerabilities, making it susceptible to decryp-
tion through computational methods like iterative attacks.

Based on other research [5], noisy injection should be
strategically applied to the ciphertext to avoid reveal-
ing the location of the noise and raising unnecessary
suspicion. When applied to only part of the ciphertext,
cybercriminals would face the intricate challenge of
pinpointing the noisy characters' locations, a task that
remains formidable even in the field of quantum com-
puting because these random noisy strategies have not
been yet studied.

These strategies involve the use of random Caesar II
mod 120 [4]-[5], applied to ciphertext previously obtained
through a standard encryption algorithm, thereby serv-
ing as dynamic encryption alternatives for random per-
formance [4].

Random noisy strategies for information encryption have
proven effective in producing dynamic ciphertext, thus
improving data security within organizations. Moreover,
the random Caesar II methodology (with mod 120) is

classified as an AI-based approach due to its use of ran-
dom and heuristic methods for Ki vector selection [5]. As
a result, artificial intelligence was used in tandem with
the heuristic method to select the Ki vector that pro-
duces maximum values for the encryption alphabet. The
similarity in procedures between the heuristic method
and genetic algorithms leads to the consideration of AI
application. This situation and the employment based on
AI, they have been already discussed by other research
[4]-[11], [68]. However, the details are described as below.

Thereby, heuristic method is defined as a validation
tool for the selected ASCII characters [5], [8], as outlined
in reference [8]. A genetic algorithm (GA) is a random
process that encompasses selection, crossover, and
mutation phases, followed by an evaluation stage using
a wrapper [9]-[10] or fitness function [10], [16], to assess
each generation of the GA [1]-[2], [9]-[10], [16], [56], [59]-[62].
In these terms, the random Caesar methodology [4]-[5]
relies on the GA selection procedure for selecting al-
phabets with mod 120 and its corresponding Ki vector
of shifts. To ensure ASCII compatibility, Ki values are
restricted to the range of 30 and 150, as maximum.

In this context, the use of artificial intelligence in data
encryption based on noisy injection has been ex-
plored in previous research [4]-[6], [8]-[10], [11], [68]. These
studies explain the use of different alphabets, referred
to as modules, with sizes of 9, 95, 105, 120, and 255.
Each alphabet corresponds to a specific range of ordi-
nal values or characters in the ASCII table. However,
using ordered ranks would make it relatively easy for
cyber-criminals to decipher the encrypted data. To ad-
dress this issue, previous research has proposed several
methods for generating optimal alphabets with random
values corresponding to the ASCII table [5], [8]-[10]. These
processes may involve the use of genetic algorithms,
with or without the application of the nearest neighbor
rule [11], [68], or even an abbreviated version using heu-
ristic methods [8]-[10], which are all part of pattern rec-
ognition and supervised learning. The use of artificial
intelligence is therefore justified.

On the other hand, although the standard version of
the random Caesar II method exclusively uses a ran-
dom process with replacement, some studies [5], [8] sug-
gest that the Ki vector can be selected using a heuristic
method. In this research, a previous learning phase is in-
troduced to generate the encryption/decryption alpha-
bet, using a procedure based on AI, similar to the noisy

https://doi.org/10.20983/culcyt.2025.3.2.2

DOI: 10.20983/culcyt.2025.3.2.2

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

24CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

random pseudo-hexadecimal (by shifting) scheme [8].
However, our ChaCha20-based proposal does not use
the pseudo-hexadecimal format. Therefore, the same fit-
ness function as the noisy random pseudo-hexadecimal
GAs or pseudo-hexadecimal by shifting version [8]-[10] is
used to prevent the alphabet vector from having repeat-
ed characters, ensuring the quality of the encryption/de-
cryption. This ensures that the characters in the alphabet
are not ordered according to their ASCII ordinal values,
making it more difficult for cyber-criminals to decipher.
In this context, the operation Ci = Si + Ki refers to
a substitution-based displacement, rather than a direct
operation on the ordinal value. As explained in [13] and
[14] with regard to the traditional Caesar algorithm.

On the other hand, the reduced random Caesar strat-
egy [4]-[5] can also employ the GA selection procedure
with mod 120, and reduced random mutation [4], it uses
the first and third stages of the GA model (i.e., selection
and mutation). For both reduced random schemes, the
Ki shifting range is constrained between 0 and 105 or-
dinal values to stay within the ASCII table limits.

We excluded reduced random Caesar and reduced ran-
dom mutation from this study because they may be
worth examining in future works.

Regarding result evaluation, a modified cross-valida-
tion method [4]-[7] is proposed to internally bias the dis-
crimination process, building on previous discussions.
This information can help organizations consider noisy
injection as a viable security measure.

In Table 1, the encryption (TC) and decryption (TD)
times (in milliseconds) and estimated errors are pre-
sented, with some results rounded for consistency with
[5], [7]. The TC and TD columns display average encryp-
tion and decryption times, with standard deviations
in parentheses. Two ciphertext tests for each strategy
demonstrate the potential for different results, even
with the same plaintext, as above mentioned.

III. RESULTS AND DISCUSSION

The experiments were conducted using TS, and the es-
timated error, TC, and TD were computed individually
for each encryption strategy, as previously described.
A five-fold modified cross-validation [4] was applied to
each TS, enabling a direct comparison with the results
of other research [5]-[7].

The traditional cross-validation methodology [46]-[47],
[56], [59], [63], [65]-[67] typically involves dividing the TS
into five subsamples of roughly equal size (around 20%
each), with one subsample serving as the test set (MC)
for model evaluation [7]. The four subsamples not used
for testing (approximately 80% of TS) because they are
combined and used for model training. The trained
model is then tested on the MC, which serves as new
data for evaluation. This process is repeated five times
to derive the standard deviation and the average or
global accuracy [66]. In this research, the encryption
algorithm's evaluation does not necessitate a training
model with TS or evaluation with MC, rendering the
traditional procedure inapplicable to data encryption
or decryption. Consequently, the training and eval-
uation tasks were carried out before the ciphertext or
FinalPackage was generated.

For instance, the standard encryption algorithm is first
applied to the plaintext to generate a ciphertext. It is
then decrypted and both vectors are saved in the TS.
In the case of random noisy strategies, the plaintext is
encrypted using the standard encryption algorithm for
producing a ciphertext. The heuristic method is then
applied to emulate a partial phase training, leveraging
the GA's random selection stage.

The random Caesar strategy is used for partial training
to obtain the Ki vector, which is then applied to the ci-
phertext for noisy injection in the FinalPackage. The
encrypted sequence is decrypted, and both vectors are
saved in the TS.

The cross-validation method [4]-[5] has been modified
to adopt a new approach that it does not rely on MC
for assessing global accuracy [66]. Such is the case of the
process for data encryption/decryption, experienced in
this research. This cross-validation modification [4]-[7]
consists in omitting the evaluation of the MC patterns.
Instead, the error is computed, but only with a part of
TS (i.e., only four subsamples are employed).

This operation is repeated five times, being extracted se-
quentially, approximately 20% of the information (i.e.,
20% of TS is omitted).

By excluding part of the TS, this schema can simulate the
estimated error in different environments, yielding a more
convergent result with an optimistic bias (i.e., the value
obtained may be better or equal when applied practically)

https://doi.org/10.20983/culcyt.2025.3.2.2

DOI: 10.20983/culcyt.2025.3.2.2

25CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

[7]. Moreover, it allows evaluating the estimated error and
other numeric features of TS. On the basis that, if the de-
crypted ciphertext, it does not match the input plaintext
(class identifier or Label), then the error percentage is
calculated, according to number of coded characters that
they could not be decrypted, to calculate their percentage.

The presented values of the Test 1 and Test 2 columns
are approximations of the ciphertext, as they include
non-printable characters. These characters may not dis-
play correctly on the screen due to their nature. Both
tests were copied and pasted exactly from the file creat-
ed by Python.

The presence of non-printable characters can cause dif-
ferences in screen representation when formatted in MS
Word (.docx) or PDF. However, the underlying ASCII
or UTF-8 ordinal values of these characters remain con-
sistent across different document formats. This means
that, although the visual representation may change,
the actual values do not. This characteristic can actually
enhance security, making it more challenging for cyber-
criminals to interpret the ciphertext.

Similarly, as the traditional cross-validation does, the
operation is repeated five times, extracting sequentially,
a different subsample in each iteration. With purpose
of calculating the average and standard deviation of
each attribute or column of numeric type, which in this
research, it was applied to the encryption times (TC),
decryption times (TD), and error percentage, globally,
without distinguishing the elements by class. Given
that encryption ambiguity, it was observed during ex-
perimentation, the cross-validation operation was per-
formed without distinguishing elements by class. This
aspect may be explored in future work, as it warrants
further explanation and analysis. This situation has not
had a detrimental effect on the global accuracy of the
encryption strategies evaluated.

Therefore, this study focused on experimenting with
only two classes of situations.

We started by investigating the performance of the five
encryption algorithms (DES, 3DES, AES-256, Blowfish,
and ChaCha20), using the static scheme on plaintext.
This enabled comparisons with other studies [5]-[7]. This
evaluation was focused on random noisy DES, random
noisy 3DES, random noisy AES, and random noisy
Blowfish, while random noisy ChaCha20 is presented as

a novel strategy in this research. Thereby, the five random
noisy strategies were experimented separately for noisy
injection on ciphertext as dynamic encryption measure.

After processing all the samples for each encryption
strategy separately, the global average results were com-
puted using the novel updated cross-validation method
[4]-[7], as explained above.

The data is displayed in Table 1, where the standard
deviation is also shown in parentheses. Columns TC
and TD present the encryption and decryption times,
respectively, measured in milliseconds, allowing for
comparison with other research [5], [7]. This research
terminated the iterative experimental process after pro-
ducing five repetitions of ciphertext for each encryption
approach. The results in Table 1, they include the stan-
dard deviation in parentheses, which are based on the
average of five sequential experiments evaluated using
the updated cross-validation method [5]-[11]. The follow-
ing parameters were used for the standard encryption
methods, as described below.

The parameters for the DES algorithm consisted of a 56-
bit key ('00000001'), UTF-8 encoding, ECB mode [20],
and hexadecimal output for ciphertext. The DES algo-
rithm was implemented using the pycryptodome pack-
age in Python [74]-[75].

The TripleDES (3DES) algorithm employed ECB mode
[20] with OpenSSL [21], [34], as the default backend and
a 24-bit key ('000000000000000000000001') to generate
ciphertext in hexadecimal format. Python's implemen-
tation of the 3DES algorithm leveraged the cryptogra-
phy component from the Cryptography libraries [73].

Regarding the Blowfish parameters, the ECB format [20],
with default_backend() function based on OpenSSL
schema, and the secret key of 16 bits with "00000001"
values have been employed. The ciphertext outputs with
hexadecimal encoding has been obtained. The imple-
mentation was also carried out with Cipher component
of Python's cryptography package [73].

For AES-256 experiments, a 256-bit secret key ('0000
0000000000000000000000000001') and a 128-bit IV
('0000000000000001') were employed. The implemen-
tation involved CBC mode [20], with OpenSSL [21], [34],
and PKCS7 padding [21], [34], with 128 bits, generating
ciphertext in hexadecimal format. Python's implemen-

https://doi.org/10.20983/culcyt.2025.3.2.2

DOI: 10.20983/culcyt.2025.3.2.2

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

26CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

tation leveraged the Cipher module from both the cryp-
tography package [74].

In the ChaCha20 implementation, a 32-bit key ('0
0000000000000000000000000000001') and nonce
('0000000000000001') were used with the default_
backend() function in 'None' mode. Python's standard
settings and the cryptography package [73] were applied
with hexadecimal encoding for ciphertext outputs.

On the other hand, most of the experiments were suc-
cessful. Some tests with the DES algorithm and its ran-
dom noisy alternative were exceptions because have
reported errors. The inclusion of characters outside the
ASCII table, like ordinals: 9619 and 65533, in the input
might be responsible. Although it's hard to control in-
put data in real applications, the information in Table 1
suggests that most encryption strategies were effective
in hiding this issue in the ciphertext.

Reference [5] highlights that random noisy alternatives
often struggle with controlling the maximum random
value selected within the ASCII table. Notwithstanding
the effectiveness of these strategies, an ASCII value
can be repurposed as a character in another encoding
scheme, like UTF-8.

In our work, the use of mod 120, which keeps values
within the ASCII range, meant that these situations did
not occur. Apart from specific cases of noisy injection
into the plaintext input, as mentioned previously.

The encryption process utilizing ChaCha20 outper-
formed the 3DES, AES-256, and Blowfish, symmetric
algorithms, showing speeds 1.03 to 1.09 times faster.
The difference in milliseconds ranged from 0.28 to 0.65
(see Table 1).

The encryption/decryption times are much faster us-
ing ChaCha20 algorithm, in this research was observed
that this strategy supports plaintext or ciphertext with
values greater than 255 characters. Thereby, it can be
considered a secure schema if this situation is validated
properly.

Similarly, the 3DES alternative has not encountered
any errors, but it is limited to supporting a maximum
of 22 characters for both plaintext and ciphertext,
similar to the Blowfish proposals with 13 maximum.
In this research, DES has a character limit of 255 for

plaintext or ciphertext. This was handled as mentioned
above.

Given the average error rate of 1.0% during data pro-
cessing, the DES alternative is not considered a reliable
option. The presence of an error rate in the decryption
process is a characteristic of the DES algorithm. This
is a significant concern because DES is often proposed
as a fast encryption procedure, but it is vulnerable to
errors when incorrect data is entered, such as a charac-
ter outside the ASCII range in a password. In contrast,
our novel proposal, random noisy ChaCha20, does not
exhibit this error situation.

In Table 1, several static ciphertext results are reported.
These schemes have been obtained by standard encryp-
tion algorithms: ChaCha20, DES, 3DES, AES-256, and
Blowfish. However, it does not mean, in all cases that
they are vulnerable or insecure schemes.

Besides, the best balance was obtained with random
Caesar when it was applied to plaintext. Obviously, the
improvement of encryption times with application on
plaintext of the random Caesar II with mod 120 can be
faster than the rest of strategies here evaluated.

Experimental results showed an average encryption
time of 0.14 milliseconds with a standard deviation of
0.0108, and an average decryption time of 0.05 millisec-
onds with a standard deviation of 0.0011. These find-
ings are not included in Table 1, as the study's primary
objective is to compare standard encryption algorithms
with their noisy counterparts.

However, the ChaCha20 combined with random Caesar
II mod 120 (named here random noisy ChaCha20 strat-
egy) has shown to be faster than random noisy 3DES,
random noisy AES-256, and random noisy Blowfish, of
random noisy proposals here experimented, when they
have been applied to ciphertext.

The random noisy ChaCha20 strategy based on
ChaCha20 and random Caesar II mod 120 has showed
superior speed when applied to ciphertext, regarding to
random noisy 3DES, random noisy AES-256, and ran-
dom noisy Blowfish, methods here tested. In the same
vein, the most balanced results are also achieved with
DES schemes that incorporate its random noisy strate-
gy, despite their disadvantages.

https://doi.org/10.20983/culcyt.2025.3.2.2

DOI: 10.20983/culcyt.2025.3.2.2

27CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

Concerning the novel random noisy ChaCha20 alterna-
tive has shown to be between 1.01 and 1.09 times faster
than random noisy 3DES, random noisy AES-256, and
random noisy Blowfish, of the random noisy strategies
here studied. With a range of 0.13 to 0.74 milliseconds
as difference.

A comparison of ChaCha20 and its random noisy ver-
sion indicates that the encryption speed difference is
not substantial. Traditional ChaCha20 is 1.09 times
faster than the random noisy strategy, with a difference
of just 0.69 milliseconds (see Table 1). Both ChaCha20
alternatives tested in this research had a plaintext length
limit of 255 characters, as discussed above.

The experiments conducted did not encounter any is-
sues of this limitation. In any case, it is considered that
this measure alone produces a considerable improve-
ment in the trust of encryption strategy performance.

Random noisy schemes show promise for experimental
procedures, but additional factors require examination
given the constraints of this study, where all tests were
limited to 255 characters in plaintext. Under the same
conditions, the 3DES and Blowfish alternatives were
employed, as previously discussed.

Each encryption strategy was evaluated based on its
own training sample, being designed independently.
However, the random Caesar schemes have been shown
to increase data security in organizations [4]-[5], [9], [11],
and the results of random noisy strategies yield simi-
lar positive outcomes. As shown in Table 1, the global
average calculation reflects this effect. Hence, the ran-
dom noisy approaches yield ciphertexts that they are
slightly more extensive. The results indicated that DES-
generated ciphertext is faster than that of ChaCha20,
3DES, AES-256, and Blowfish.

Nevertheless, the security implications of using DES are
significant, as its ciphertext may be susceptible to de-
cryption. The experiments further revealed an average
error rate of 1.0% during the encryption and decryption
processes. The application of random noisy strategies to
standard encryption algorithms resulted in dynamic ci-
phertext outputs in all cases.

In our research, we aim to highlight that DES, despite
its reported fast encryption schemes, exhibited errors
in decryption in our experiments. This situation is not

considered a good indicator. The error is attributed to
the input data, rather than the encryption process itself.
In practical domains, advanced users often incorporate
non-standard characters into their passwords, such as
non-printable symbols or special characters. The DES
algorithm performs well when evaluated using print-
able characters, but encounters issues when processing
non-standard characters. Specifically, when we input
the characters '▓' (ordinal 9619) and '?' (ordinal 65533)
into the password or plaintext, DES is the only algorithm
that fails, whereas the other strategies do not exhibit this
issue. Therefore, our proposal, based on random noisy
ChaCha20, aims to improve upon these schemes.

In these terms, character errors with ordinal values out-
side the ASCII table range are not a result of the en-
cryption/decryption process. Rather, these errors occur
when a user enters a plaintext, simulating a password,
that includes characters that are not part of the ASCII
table. For example, the characters '▓' y '?' with ordinal
values 9619 and 65533, respectively, they are not val-
id ASCII characters. While this situation could be ad-
dressed by working with binary data, it is considered
outside the scope of the current study, which focuses on
the injection of noise into plaintext and ciphertext. We
are currently not working with files in different formats.

Despite that the processing time for FinalPackage
ciphertext was greater than that of the standard al-
gorithms, as evident in Table 1's Test 1 and Test 2.
ChaCha20 proposals show faster execution times rela-
tive to the 3DES, AES-256, and Blowfish strategies. The
random noisy schemes, nonetheless, consistently yield
dynamic ciphertext outputs. Cybercriminals would en-
counter significant obstacles in decrypting data, as they
would need to determine each random Ki shifting value
in advance, which it has been previously hidden.

Moreover, when the novel partial noisy injection
schema is used which it is presented in [5], named as
PartialNoisy proposal. The decryption process be-
comes in very confused task when this additional vari-
ant is employed. These tasks of discovering data might
be very hard because it has not been yet studied, includ-
ing quantum computing. No experiments were carried
out with PartialNoisy. It is considered a future inves-
tigation.

In this context, repeated application of these random
noisy strategies can obtain a dynamic and better results

https://doi.org/10.20983/culcyt.2025.3.2.2

DOI: 10.20983/culcyt.2025.3.2.2

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

28CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

in comparison with the traditional static encryption al-
gorithms.

This noisy injection alternative can increase the security
degree of the ciphertext or plaintext. Besides, this situa-
tion might warn us against future quantum computing
attacks [8], [22]-[23], [42], improving the digital data securi-
ty of the organizations, as mentioned above.

Additionally, the resilience of these random noisy al-
ternatives to various cyberattacks remains unevaluated,
leaving potential vulnerabilities unknown. In previous
research [4]-[5] have recommend utilizing downsized ci-
phertext with reduced random or mutation approaches
[4] as reliable indicators.

These approaches allow for efficient encryption and
short ciphertexts, while ensuring data security is not
compromised, as the partial ciphertext is secured
through Ki shifting before being stored.

Therefore, these alternatives can present a low risk for
digital data theft by inserting a larger proportion of
noise into the ciphertext. The use of reduced random
and mutation schemes could be promising. However,
this work does not cover these options because they are
potential topics for future works.

Notwithstanding the difficulties, the study's goals and
hypotheses were fulfilled as planned. By utilizing noisy
injection, the random noisy ChaCha20 offers a novel
approach to dynamic encryption, yielding ciphertext
outputs that they are unique each time. This approach
can lead to diverse results, even with the same plaintext
and parameters, potentially misleading and hindering
cybercriminals' efforts. This information can be corrob-
orated in Table 1.

Our analysis of standard encryption algorithms versus
random noisy strategies indicates that noisy injection
can be a safe and effective alternative for organizations.
It includes the novel random noisy ChaCha20 strategy,
particularly in those environments, which have adopted
the use of traditional ChaCha20.

The random noisy scheme is recommended to enhance
digital data security in this type of cryptosystem. It is
considered a safe measure for organizations because
the simple fact of having this novel alternative based on
noisy injection. It opens a wide range of opportunities

for organizations regarding its use because it guarantees
improvement in the security of digital data.

A potential area for further research is modifying
the dynamic encryption methodology presented in
this study to incorporate strategies such as reduced
noisy schemes [5] and reduced random mutation [4].
Applying these strategies to the camouflaging cipher-
text has shown a reduction of up to 33% in ciphertext
size in FinalPackage compared to random noisy ap-
proaches. Another strategy that could be examined is
the application of different methods for noisy injection.
Particularly, approaches that combine the simultane-
ous random noisy methodology with AI based on the
nearest neighbor rule [8], [10]-[11], [46]-[47], [65], [67], and
pseudo-hexadecimal encoding [8]-[10], as mentioned
previously. They are worth exploring, presenting nu-
merous avenues for further investigation in future
studies.

IV. CONCLUSIONS

The updating of cybersecurity strategy periodically
such as encryption methods, it is one of the factors with
a great influence for safety digital data in organizations.
However, it does not guarantee their digital data secu-
rity. Recent research highlight the existence of multiple
methodologies examining the issues related to encryp-
tion vulnerabilities. A strategy that is too well-known
can become compromised and ineffective. In previous
studies have proposed various dynamic encryption al-
ternatives to address the issue of digital data theft, as
mentioned above.

This paper presents a novel modification of these meth-
odologies. It is based on a fusion of techniques with a
standard encryption algorithm combined with random
Caesar methodology, for use in real applications of the
organizations.

A new dynamical encryption proposal, known as the
random noisy ChaCha20 strategy is presented in this
paper. Additionally, a comparison of dynamic encryp-
tion alternatives based on five random noisy strategies
were conducted.

These methods use artificial intelligence to inject noise
into ciphertext, relying on random and heuristic ap-
proaches as outlined above. Given its capabilities, it
is well-suited for deployment in actual organization-

https://doi.org/10.20983/culcyt.2025.3.2.2

DOI: 10.20983/culcyt.2025.3.2.2

29CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

al environments. Due to that the methodology based
on noisy injection offers an important contribution
to amend deficiencies, which were produced by inad-
equate standard encryption strategies. Thereby, it can
increase its usefulness.

Experimental findings with dynamic random noisy
encryption alternatives have confirmed their capacity
for handling cyberattacks and data security issues with
high levels of assurance. Notably, these random noisy
strategies consistently yield dynamic and generalized
results that surpass those achieved with standard en-
cryption algorithms (see Table 1).

We aim to explore this issue in more depth through
additional research. One technique we will be investi-
gating involves implementing measures for reducing
the size of ciphertext generated by random noisy strate-
gies. One approach could be to utilize reduced random
schemes or reduced mutation strategies, as mentioned
above, which facilitate the concealment of ciphertext
operations.

Another option worth considering is the utilization of
multiple methods for noisy injection. Particularly, the
techniques that merge simultaneous random noise with
nearest neighbor-based AI and pseudo-hexadecimal
encoding, as outlined above. Naturally, this opens up
a wide range of possibilities that we plan to explore in
future work.

REFERENCES

[1]	 B. Delman, “Genetic Algorithms in Cryptography,” M.S.
thesis, Dept. of Computer Engineering, Rochester Institute
of Technology, Rochester, New York, 2004. [Online.]
Available: https://repository.rit.edu/theses/5456/

[2]	 S. Kalsi, H. Kaur, and V. Chang, “DNA Cryptography
and Deep Learning using Genetic Algorithm with NW
algorithm for Key Generation,” J Med Syst, vol. 42, no.
17, Dec. 2018, doi: 10.1007/s10916-017-0851-z.

[3]	 J. C. Mendoza, “Demostración de Cifrado Simétrico y
Asimétrico,” Ingenius, no. 3, pp. 46-53, 2008.

[4]	 E. Rangel-Lugo and K. U. Rangel-Ríos, “Novel Random
Encryption Methods Based On Mutation Strategies Of
Artificial Intelligence,” Sci. Pract. Cyber Secur. J., vol. 8,
no. 3, pp. 84-91, Sep. 2024.

[5]	 E. Rangel-Lugo, K. U. Rangel-Ríos, and L. González-
Vidales, “Dynamic Encryption Methods Based On Noisy
Injection And Camouflaging Ciphertext Strategies With
Artificial Intelligence,” Sci. Pract. Cyber Secur. J., vol. 9,
no. 1, pp. 82-104, Mar. 2025.

[6]	 E. Rangel, K. U. Rangel, and L. González, “Inyección
de Ruido para Encriptado de Datos Dinámico con
Inteligencia Artificial. Caso de Estudio: Algoritmo
GOST R 34.12-2015,” Rev. Electron. Divulg. Investig.,
vol. 29, pp. 11-36, Jun. 2025.

[7]	 E. Rangel and K. U. Rangel, “Mejorando la seguridad
del algoritmo Camellia, mediante la inyección de rui-
do sobre textos cifrados utilizando procesos basados
en inteligencia artificial,” INTELETICA, vol. 2, no. 4,
pp. 75–101, Sep. 2025, Accessed: Sep. 3, 2025. [Online].
Available: https://inteletica.iberamia.org/index.php/
journal/article/view/45

[8]	 E. Rangel, K. U. Rangel, L. González, A. Ortiz, and C.
A. Rodríguez, “Four Dynamic Encryption Alternatives
With Artificial Intelligence Based On Pseudo-
Hexadecimal Noisy Injection Schema For Handling
The Theft Of Digital Data Problem,” Sci. Pract. Cyber
Secur. J., vol. 9, no. 3, pp. 59-77, Jun. 2025. [Online].
Available: https://journal.scsa.ge/papers/four-dynamic-
encryption-alternatives-with-artificial-intelligence-
based-on-pseudo-hexadecimal-noisy-injection-
schema-for-handling-the-theft-of-digital-data-problem/

[9]	 E. Rangel, K. U. Rangel, J. Medrano, C. A. Bernal, and L.
González. (Nov. 2023). Algoritmo Genético para Cifrado
de Datos, Basado en un Nuevo Concepto Pseudo-
Hexadecimal con Inteligencia Artificial. Presented
at Sexto (VI) Congreso Nacional de Investigación en
Ciencia e Innovación de Tecnologías Productivas, Ciudad
Altamirano, Guerrero, México. [Online]. Available:
https://www.cdaltamirano.tecnm.mx/index.php/17-
vi-congreso-nacional-de-investigacion-en-ciencia-e-
innovacion-de-tecnologias-productivas/140-tecnm-40

[10]	 E. Rangel, K. U. Rangel, and L. González, “Cifrado de
Datos Dinámico con Inteligencia Artificial, Utilizando
el Nuevo Formato Pseudo-Hexadecimal,” Rev. Electron.
Divulg. Investig., vol. 28, pp. 46-73, Dec., 2024. [Online].
Available: https://sabes.edu.mx/revista-electronica/27/#

[11]	 E. Rangel Lugo and K. U. Rangel Ríos, “La regla del
vecino más cercano como alternativa para inyectar

https://doi.org/10.20983/culcyt.2025.3.2.2
https://repository.rit.edu/theses/5456/
https://doi.org/10.1007/s10916-017-0851-z
https://inteletica.iberamia.org/index.php/journal/article/view/45
https://inteletica.iberamia.org/index.php/journal/article/view/45
https://journal.scsa.ge/papers/four-dynamic-encryption-alternatives-with-artificial-intelligence-bas
https://journal.scsa.ge/papers/four-dynamic-encryption-alternatives-with-artificial-intelligence-bas
https://journal.scsa.ge/papers/four-dynamic-encryption-alternatives-with-artificial-intelligence-bas
https://journal.scsa.ge/papers/four-dynamic-encryption-alternatives-with-artificial-intelligence-bas
https://www.cdaltamirano.tecnm.mx/index.php/17-vi-congreso-nacional-de-investigacion-en-ciencia-e-innovacion-de-tecnologias-productivas/140-tecnm-40
https://www.cdaltamirano.tecnm.mx/index.php/17-vi-congreso-nacional-de-investigacion-en-ciencia-e-innovacion-de-tecnologias-productivas/140-tecnm-40
https://www.cdaltamirano.tecnm.mx/index.php/17-vi-congreso-nacional-de-investigacion-en-ciencia-e-innovacion-de-tecnologias-productivas/140-tecnm-40
https://sabes.edu.mx/revista-electronica/27/#

DOI: 10.20983/culcyt.2025.3.2.2

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

30CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

ruido a mensajes encriptados por el algoritmo: Noised
Random Hexadecimal”, INTELETICA, vol. 1, no. 2, pp.
1–15, Dec. 2024, Accessed: Mar. 23, 2025. [Online].
Available: https://inteletica.iberamia.org/index.php/
journal/article/view/16

[12]	 D. Álvarez, “Algunos Aspectos Jurídicos del Cifrado de
Comunicaciones,” Derecho PUCP, no. 83, pp. 241-264,
2019, doi: 10.18800/derechopucp.201902.008.

[13]	 F. Barranco and C. Galindo, “Criptografía básica y al-
gunas aplicaciones.” repositori.uji.es. https://repositori.
uji.es/items/35da2f29-ee4a-4dbc-a82f-c450a81cf9be
(accessed Apr. 13, 2025).

[14]	 S. Gómez, J. D. Arias, and D. Agudelo, “Cripto-Análisis
sobre Métodos Clásicos de Cifrado,” Scientia et Technica,
vol. XVII, no. 50, pp. 97-102, Apr. 2012.

[15]	 B. Javidi and J. L. Horner, “Optical Pattern Recognition
for Validation and Security Verification,” Opt.
Eng., vol. 33, no. 6, pp. 1752-1756, Jun. 1994, doi:
10.1117/12.170736.

[16]	 B. Reddaiah, “A Study on Genetic Algorithms for
Cryptography,” Int. J. Comput. Appl., vol. 177, no. 28, pp.
1-4, Dec., 2019, doi: 10.5120/ijca2019919509.

[17]	 C. Sebas. “¿Qué son los Algoritmos Genéticos en las
Inteligencias Artificiales?” aprendeinformaticas.com.
Accessed: Mar. 23, 2024. [Online]. Available: https://
aprendeinformaticas.com/algoritmos-geneticos-que-es/

[18]	 S. Paul, P. Dasgupta, P. K. Naskar, and A. Chaudhuri,
“Secured image encryption scheme based on DNA en-
coding and chaotic map”, Rev. Comput. Eng. Stud., vol. 4,
no. 2, pp. 70-75, Jun. 2017. doi: 10.18280/rces.040206.

[19]	 R. Oppliger, Contemporary cryptography, 1st ed. Boston/
London: Artech House Computer Security Library,
2005.

[20]	 D. R. Stinson and M. B. Paterson, Cryptography: Theory
and Practice, 4th ed. Chapman and Hall Book/CRC
Press, 2019.

[21]	 H. C. A. Van-Tilborg, Ed., Encyclopedia Of Cryptography
And Security, 1st ed. Springer, 2025, pp. 114-115, 201-
202, doi: 10.1007/0-387-23483-7.

[22]	 L. Baklaga, “Leading The Way In Quantum-Resistant
Cryptography For Everyday Safety”, Sci. Pract. Cyber
Secur. J., vol. 8, no. 3, pp 65-73, 2024. Accessed: Mar.
23, 2025. [Online]. Available: https://journal.scsa.
ge/papers/leading-the-way-in-quantum-resistant-
cryptography-for-everyday-safety/

[23]	 R. Bavdekar, C. Eashan-Jayant, A. Ankit, and K. Tiwari,
“Post Quantum Cryptography: A Review of Techniques,
Challenges, and Standardizations,” presented at 2023
International Conference on Information Networking
(ICOIN), 2023.

[24]	 L. A. Tawalbeh, H. Houssain, and T. F. Al-Somani,
“Review of Side Channel Attacks and Countermeasures
on ECC, RSA, and AES Cryptosystems,” J. Internet
Technol. and Secur. Trans., vol. 5, nos. 3/4, Sep./Dec.
2016.

[25]	 D. Luciano and G. Prichett, “Cryptology: From Caesar
Ciphers To Public-key Cryptosystems,” Col. Math. J., vol. 18,
no. 1, pp. 2-17, 1987, doi: 10.1080/07468342.1987.11973000

[26]	 S. J. Saydahd, R. K. Muhammed, S. A. Hassan, and A.
M. Aladdin, “A Comparative Performance Evaluation of
Hybrid Encryption Techniques Using ECC, RSA, AES,
and ChaCha20 for Secure Data Transmission,” IJOIR,
vol. 12, no. 2, pp. 157–172, Dec. 2025, doi: 10.53523/
ijoirVol12I2ID598.

[27]	 J. Rodríguez, “Operadores Genéticos Aplicados a la
Criptografía Simétrica,” proyecto de grado, Facultad
de Ingeniería, Universidad Distrital Francisco José de
Caldas, Bogotá, Colombia, 2020. Available: https://
repository.udistrital.edu.co/handle/11349/28192

[28]	 K. Lakshmi Harsha Vardhan and V. Jain, “Enhanced
Secure File Transfer: A Comparative Analysis of Elliptic
Curve Cryptography vs. RSA,” 2025 International
Conference on Advanced Computing Technologies
(ICoACT), Sivalasi, India, 2025, pp. 1-6, doi: 10.1109/
ICoACT63339.2025.11005106.

[29]	 D. Hankerson, J. López, and A. Menezes, “Software
Implementation of Elliptic Curve Cryptography
over Binary Fields,” in Cryptographic Hardware and
Embedded Systems — CHES 2000. CHES 2000. Lecture
Notes in Computer Science, vol. 1965, Ç. K. Koç and C.
Paar, Eds., Berlin, 2000, doi: 10.1007/3-540-44499-8_1.

https://doi.org/10.20983/culcyt.2025.3.2.2
https://inteletica.iberamia.org/index.php/journal/article/view/16
https://inteletica.iberamia.org/index.php/journal/article/view/16
https://doi.org/10.18800/derechopucp.201902.008
https://repositori.uji.es/items/35da2f29-ee4a-4dbc-a82f-c450a81cf9be
https://repositori.uji.es/items/35da2f29-ee4a-4dbc-a82f-c450a81cf9be
https://doi.org/10.1117/12.170736
http://dx.doi.org/10.5120/ijca2019919509
https://aprendeinformaticas.com/algoritmos-geneticos-que-es/
https://aprendeinformaticas.com/algoritmos-geneticos-que-es/
https://iieta.org/sites/default/files/Journals/RCES/04.02_06.pdf
https://doi.org/10.1007/0-387-23483-7
https://journal.scsa.ge/papers/leading-the-way-in-quantum-resistant-cryptography-for-everyday-safety
https://journal.scsa.ge/papers/leading-the-way-in-quantum-resistant-cryptography-for-everyday-safety
https://journal.scsa.ge/papers/leading-the-way-in-quantum-resistant-cryptography-for-everyday-safety
https://doi.org/10.1080/07468342.1987.11973000
https://doi.org/10.53523/ijoirVol12I2ID598
https://doi.org/10.53523/ijoirVol12I2ID598
https://repository.udistrital.edu.co/handle/11349/28192
https://repository.udistrital.edu.co/handle/11349/28192
https://doi.org/10.1109/ICoACT63339.2025.11005106
https://doi.org/10.1109/ICoACT63339.2025.11005106
https://doi.org/10.1007/3-540-44499-8_1

DOI: 10.20983/culcyt.2025.3.2.2

31CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

[30]	 P .L. Montgomery, “Speeding up the Pollard rho meth-
od,” Math. Comp., vol. 48, no. 177, pp. 453-456, 1987.

[31]	 NIST, “Recommended methods for key establish-
ment using public key cryptography,” NIST Special
Publication 800-56A Revision 2, 2013. Accessed: Mar.
23, 2025. [Online]. Available: https://nvlpubs.nist.gov/
nistpubs/specialpublications/nist.sp.800-56ar2.pdf

[32]	 H. W. Dhany, F. Izhari, H. Fahmi, M. Tulus, and M.
Sutarman, “Encryption and Decryption using Password
Based Encryption, MD5, and DES,” in Proceedings of
the International Conference on Public Policy, Social
Computing and Development 2017 (ICOPOSDev 2017),
2018, doi: 10.2991/icoposdev-17.2018.57.

[33]	 M. I. Bhat and K. J. Giri, “Impact of Computational
Power on Cryptography,” in Multimedia Security.
Algorithms for Intelligent Systems, K. J. Giri, S. A. Parah,
R. Bashir, and K. Muhammad, Eds. Singapore: Springer,
2021, doi: 10.1007/978-981-15-8711-5_4.

[34]	 H. C. A. van Tilborg and S. Jajodia, Encyclopedia Of
Cryptography and Security. New York: Springer, 2011,
doi: 10.1007/978-1-4419-5906-5.

[35]	 B. Schneier, “Description of a new variable-length
key, 64-bit block cipher (Blowfish),” in Fast Software
Encryption. FSE 1993. Lecture Notes in Computer Science,
vol. 809, R. Anderson, Ed., 1994, doi: 10.1007/3-540-
58108-1_24.

[36]	 B. Schneier, Secrets and lies: Digital security in a net-
worked world. Wiley, 2000.

[37]	 E. A. AL-Maqtari and E. A. AL-Maqtari, “Performance
Evaluation for AES, Blowfish, DES, and 3DES
Cryptography Algorithms,” PUIRP, vol. 2, no. 5, pp. 86-
95, Oct. 2024, doi: 10.5281/zenodo.13974870.

[38]	 R. K. Muhammed et al., “Comparative Analysis of AES,
Blowfish, Twofish, Salsa20, and ChaCha20 for Image
Encryption”, KJAR, vol. 9, no. 1, pp. 52–65, May. 2024,
doi: 10.24017/science.2024.1.5.

[39]	 H. K. Garai and S. Dey, “A multi-step key recov-
ery attack on reduced round Salsa and ChaCha,”
Cryptologia, vol. 49, no. 3, pp. 252–267, Jun. 3, 2024, doi:
10.1080/01611194.2024.2342918.

[40]	 A. Saini, A. Tsokanos, and R. Kirner, “CryptoQNRG: a
new framework for evaluation of cryptographic strength
in quantum and pseudorandom number generation for
key-scheduling algorithms,” J. Supercomput., vol. 79,
pp. 12219–12237, Jul. 2023, doi: 10.1007/s11227-023-
05115-4.

[41]	 J. Daemen and V. Rijmen, The Design of Rijndael: AES -
The Advanced Encryption Standard. Springer, 2002, doi:
10.1007/978-3-662-04722-4.

[42]	 M. Iavich, T. Kuchukhidze, and A. Gagnidze, “Post-
quantum Digital Signature Using Verkle Trees And
Lattices,” Sci. Pract. Cyber Secur. J., vol. 8, no. 3, pp. 35-
52, 2024.

[43]	 P. Fuegner. “Are RSA and AES Both at Risk From
the Quantum Threat?” QuSecure.com. Accessed:
Mar. 8, 2025. [Online]. Available: https://www.
qusecure.com/are-rsa-and-aes-both-at-risk-from-the-
quantum-threat/#:~:text=The emergence of quantum
computers,efficiently factoring large prime numbers

[44]	 M. Sharma, V. Choudhary, R. S. Bhatia, S. Malik, A.
Raina, and H. Khandelwal, “Leveraging the power of
quantum computing for breaking RSA encryption,”
Cyber-Physical Systems, vol. 7, no. 2, pp. 73–92, 2021,
doi: 10.1080/23335777.2020.1811384.

[45]	 J. Thakur and N. Kumar, “DES, AES and Blowfish:
Symmetric Key Cryptography Algorithms Simulation
Based Performance Analysis,” Int. J. Emerging Technol.
Adv. Eng., vol. 1, no. 2, pp. 6-12, Jan. 2011.

[46]	 E. Rangel, “Vecinos Envolventes para Variantes de
la Regla del Vecino más Cercano,” tesis de maestría,
Instituto Tecnológico de Toluca, Metepec, México, 2002.

[47]	 E. Rangel, “La Regla de los k Vecinos más Cercanos
(k-NN) Basada en Distancia de Manhattan (City-
Block) para Mejorar la Clasificación de Patrones,” in
Quinto (V) Congr. Nal. de Invest. en Ciencia e Innov. de
Tecnol. Productivas, Cd. Altamirano, Gro., México, Nov.
2022. [Online]. Available: http://erangel.coolpage.biz/
pappers/edgarrangel2022.pdf

[48]	 J. C. Hernández, “Técnicas de inteligencia artificial
en criptología,” tesis doctoral, Universidad Carlos III
de Madrid, 2002. [Online]. Available: https://dialnet.
unirioja.es/servlet/tesis?codigo=194087

https://doi.org/10.20983/culcyt.2025.3.2.2
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-56ar2.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-56ar2.pdf
https://doi.org/10.2991/icoposdev-17.2018.57
https://doi.org/10.1007/978-981-15-8711-5_4
https://doi.org/10.1007/978-1-4419-5906-5
https://doi.org/10.1007/3-540-58108-1_24
https://doi.org/10.1007/3-540-58108-1_24
https://doi.org/10.5281/zenodo.13974870
https://doi.org/10.24017/science.2024.1.5
https://jackgiffin.com/main/pdfs/A-multi-step-key-recovery-attack-on-reduced-round-Salsa-and-ChaCha-Hirendra-Garai-and-Sabyasachi-Dey.pdf
https://doi.org/10.1007/s11227-023-05115-4
https://doi.org/10.1007/s11227-023-05115-4
https://doi.org/10.1007/978-3-662-04722-4
https://www.qusecure.com/are-rsa-and-aes-both-at-risk-from-the-quantum-threat/#:~:text=The emergence
https://www.qusecure.com/are-rsa-and-aes-both-at-risk-from-the-quantum-threat/#:~:text=The emergence
https://www.qusecure.com/are-rsa-and-aes-both-at-risk-from-the-quantum-threat/#:~:text=The emergence
https://www.qusecure.com/are-rsa-and-aes-both-at-risk-from-the-quantum-threat/#:~:text=The emergence
https://doi.org/10.1080/23335777.2020.1811384
http://erangel.coolpage.biz/pappers/edgarrangel2022.pdf
http://erangel.coolpage.biz/pappers/edgarrangel2022.pdf
https://dialnet.unirioja.es/servlet/tesis?codigo=194087
https://dialnet.unirioja.es/servlet/tesis?codigo=194087

DOI: 10.20983/culcyt.2025.3.2.2

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

32CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

[49]	 H. Nejatollahi, N. Dutt, S. Ray, F. Regazzoni, I. Banerjee,
and R. Cammarota, “Post-Quantum Lattice-Based
Cryptography Implementations: A Survey,” ACM
Comput. Surv., vol. 51, no. 6, article 129, pp. 1-41, 2019,
doi: 10.1145/3292548

[50]	 Ö. Suçeken and O. Özkaraca, “Cryptography with
Artificial Intelligence: An Overview,” in Futuristic
Computational Systems and Advanced Engineering for
the Society, J. Hemanth, U. Kose, N. Ibadov, I. S. Uncu,
and H. Armagan, Eds. Springer, 2025, doi: 10.1007/978-
3-031-94600-4_13.

[51]	 T. M. Mitchell, Machine learning, 2nd Ed. McGraw-Hill,
2020.

[52]	 J. Ross Quinlan, C4.5: Programs for Machine Learning,
San Mateo, CA: Morgan Kaufmann, 1993.

[53]	 S. J. Russell and P. Norvig, Inteligencia artificial: Un en-
foque moderno, 4th Ed. Pearson, 2020.

[54]	 R. Morelli, R. Walde, and W. Servos, “A study of heuris-
tic approaches for breaking short cryptograms,” Int. J.
Artif. Intell. Tools, vol. 13, no. 01, pp. 45-64, 2004, doi:
10.1142/S0218213004001417.

[55]	 J. S. Sánchez, F. Pla, and F. J. Ferri, “Prototype selection
for the nearest neighbor rule through proximity graphs,”
Pattern Recognition Letters, vol.18, no. 6, pp. 507-513,
Jun. 1997, doi: 10.1016/S0167-8655(97)00035-4.

[56]	 L. I. Kuncheva and L. C. Jain, “Nearest Neighbor
Classifier: Simultaneous editing and feature selection,”
Pattern Recognition Letters, vol. 20, no. 11–13, pp. 1149–
1156, Nov. 1999, doi: 10.1016/S0167-8655(99)00082-3.

[57]	 K. P. Murphy, Probabilistic machine learning: An intro-
duction. MIT Press, 2022.

[58]	 B. Reddaiah, “A Study on Pairing Functions for
Cryptography,” IJCA (0975-8887), vol. 149, no. 10, pp.
4-7, Sep. 2016.

[59]	 D. B. Skalak, “Prototype and Feature Selection by Sampling
and Random Mutation Hill Climbing Algorithms,” in
Proc. of the 11th Int. Conf., Jul. 10–13, 1994, pp. 293-301,
doi: 10.1016/B978-1-55860-335-6.50043-X.

[60]	 A. Clark, “Modern optimisation algorithms for crypt-
analysis,” Proceedings of ANZIIS '94 - Australian New
Zealnd Intelligent Information Systems Conference,
Brisbane, QLD, Australia, 1994, pp. 258-262, doi:
10.1109/ANZIIS.1994.396969.

[61]	 W. Griindlingh and J. H. Van-Vuuren, “Using Genetic
Algorithms to Break a Simple Cryptographic Cipher,”
submitted 2002, accessed: Mar. 31, 2003, unpublished.

[62]	 R. A. J. Matthews, “The use of genetic algorithms in
cryptanalysis,” Cryptologia, vol. 17, no. 2, pp. 187-201,
Jun. 1993, doi: 10.1080/0161-119391867863.

[63]	 L. Bruzzone and S. B. Serpico, “Classification of
Imbalanced remote-sensing data by neural networks,”
Pattern Recognition Letters, vol. 18, no. 11-13, pp. 1323-
1328, Nov. 1997, doi: 10.1016/S0167-8655(97)00109-8.

[64]	 I. Goodfellow, Y. Bengio, and A. Courville, Deep learn-
ing. MIT Press, 2021.

[65]	 R. Barandela, J. S. Sánchez, V. García, and E. Rangel,
“Strategies for Learning in Class Imbalance Problems,”
Pattern Recognition, vol. 36, no. 3, pp. 849-851, Mar.
2003, doi: 10.1016/S0031-3203(02)00257-1.

[66]	 D. Lewis and J. Catlett, “Heterogeneous Uncertainty
Sampling for Supervised Learning,” Proc. of the 11th Int.
Conf. on Machine Learning, ICML'94, New Brunswick,
New Jersey, Morgan Kaufmann, pp. 148-156, 1994.

[67]	 T. Cover and P. Hart, “Nearest neighbor pattern classi-
fication,” in IEEE Transactions on Information Theory,
vol. 13, no. 1, pp. 21-27, Jan. 1967, doi: 10.1109/
TIT.1967.1053964.

[68]	 E. Rangel and K. U. Rangel, “Novel Pseudo-Hexadecimal
Encryption Strategies For Camouflaging Ciphertext
Based On Nearest Neighbor With Artificial Intelligence,”
IJCOPI, manuscript in review since 2024, unpublished.

[69]	 Microsoft. “Descarga de software.” Microsoft.com.
Accessed: Jun. 1, 2015. [Online]. Available: https://
www.microsoft.com/es-mx/software-download

[70]	 Python. “The Python Network.” Python.org. Accessed:
Nov. 18, 2024. [Online]. Available: https://www.python.
org/downloads/

https://doi.org/10.20983/culcyt.2025.3.2.2
https://doi.org/10.1145/3292548
https://doi.org/10.1007/978-3-031-94600-4_13
https://doi.org/10.1007/978-3-031-94600-4_13
https://doi.org/10.1142/S0218213004001417
https://doi.org/10.1016/S0167-8655(97)00035-4
https://doi.org/10.1016/S0167-8655(99)00082-3
https://doi.org/10.1016/B978-1-55860-335-6.50043-X
https://doi.org/10.1109/ANZIIS.1994.396969
https://doi.org/10.1080/0161-119391867863
https://doi.org/10.1016/S0167-8655(97)00109-8
https://doi.org/10.1016/S0031-3203(02)00257-1
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TIT.1967.1053964
https://www.microsoft.com/es-mx/software-download
https://www.microsoft.com/es-mx/software-download
https://www.python.org/downloads/
https://www.python.org/downloads/

DOI: 10.20983/culcyt.2025.3.2.2

33CULCYT. Cultura Científica y Tecnológica
 Vol. 22 | no. 3 | September-December 2025

E. Rangel et al. | ChaCha20 Encryption Algorithm Security
Enhancement through Artificial Intelligence-Based Random Noisy
Injection: A Case Study | RESEARCH ARTICLE

ISSN (electronic): 2007-0411

[71]	 Google. “Sistema operativo para dispositivos móviles.”
Android.com. Accessed: Jun. 1, 2025. [Online]. Available:
https://www.android.com/intl/es_es/android-12/

[72]	 Google. “Pydroid 3 versión 7.4_arm64. IDE for Python
3. Lenguaje de programación y compilador.” Play.
Google.com. Accessed: Jun. 1, 2025. [Online]. Available:
https://play.google.com/store/apps/details?id=ru.iiec.
pydroid3&hl=en&pli=1.

[73]	 Python. “Cryptography 45.0.4.” pypi.org. Accessed: Jun.
1, 2025. [Online]. Available: https://pypi.org/project/
cryptography/

[74]	 PyCryptodome. “Crypto.Cipher package. Introduction.”
pycryptodome.readthedocs.io. Accessed: Mar. 30, 2025.
[Online]. Available: https://pycryptodome.readthedocs.
io/en/latest/src/cipher/cipher.html

[75]	 Python, “Pycryptodome 3.21.0.” pypi.org. Accessed:
Dec. 13, 2024. [Online]. Available: https://www.
pycryptodome.org/src/changelog#september-2024

[76] R. Barandela, E. Rangel, J. S. Sánchez, and F. J. Ferri,
“Restricted Decontamination for the Imbalanced
Training Sample Problem,” in Pattern Recognition,
Speech and Image Analysis, A. Sanfeliu and J. Ruiz-
Shulcloper, Eds. Springer-Verlag, 2003, pp. 424-431,
doi: 10.1007/978-3-540-24586-5_52.

[77] R. Barandela, J. S. Sánchez, and E. Rangel, “Two
Modifications of the Decontamination Methodology,”
IASTED, pp. 391-396, 2003. Accessed: Jun. 1, 2025.
[Online]. Available: https://www.actapress.com/
PaperInfo.aspx?PaperID=15031&reason=500

ACKNOWLEDGMENTS

This work was supported by Tecnológico Nacional de
México (Instituto Tecnológico de Ciudad Altamirano).
This research is future work of a last project identified
by: 19329.24-P.

https://doi.org/10.20983/culcyt.2025.3.2.2
https://www.android.com/intl/es_es/android-12/
https://play.google.com/store/apps/details?id=ru.iiec.pydroid3&hl=en&pli=1
https://play.google.com/store/apps/details?id=ru.iiec.pydroid3&hl=en&pli=1
https://pypi.org/project/cryptography/
https://pypi.org/project/cryptography/
https://pycryptodome.readthedocs.io/en/latest/src/cipher/cipher.html
https://pycryptodome.readthedocs.io/en/latest/src/cipher/cipher.html
https://www.pycryptodome.org/src/changelog#september-2024
https://www.pycryptodome.org/src/changelog#september-2024
https://pypi.org/project/pycryptodome/
https://link.springer.com/chapter/10.1007/978-3-540-24586-5_52
https://www.actapress.com/PaperInfo.aspx?PaperID=15031&reason=500
https://www.actapress.com/PaperInfo.aspx?PaperID=15031&reason=500

