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ABSTRACT

The problem of digital data theft is receiving growing attention in organizations because it may produce significant finan-
cial losses. This issue can be handled using dynamic encryption methodologies. There exists safety encryption alterna-
tives such as AES (Advanced Encryption Standard) and RSA (Rivest-Shamir-Adleman). However, it is known that these 
algorithms have been threatened by quantum computing advent. Thereby, the aim of this research is to suggest novel 
dynamic encryption alternatives using artificial intelligence (AI), based on a noisy injection scheme on ciphertext, as it 
has the potential to mislead cybercriminals. Several aspects related to this subject were studied. Despite that quantum 
computing was not used, other measures have been proposed. The designed methodology was focused over the updating 
of ChaCha20 strategy combined with random Caesar II methodology. This fusion of techniques, referred to as random 
noisy ChaCha20, is suggested for increasing ciphertext security. Our novel proposal was compared with other random 
noisy alternatives such as random noisy DES, random noisy 3DES, random noisy AES-256, and random noisy Blowfish. 
The obtained results were dynamic ciphertext outputs. These schemes are limited to the ASCII table values. In conclu-
sion, the suggested alternatives presented here may be difficult for cybercriminals to decrypt. 

KEYWORDS: applications of AI; cryptography; dynamic encryption methods; noisy injection strategies.

RESUMEN

El problema de robo digital de datos en las organizaciones está recibiendo gran atención porque puede ocasionar pérdidas 
financieras. Este problema se puede amortiguar usando métodos de cifrado dinámico. Existen alternativas seguras para el 
cifrado de datos, tales como AES (Advanced Encryption Standard) y RSA (Rivest-Shamir-Adleman). Sin embargo, es sa-
bido que dichos algoritmos se encuentran amenazados por la llegada de la computación cuántica. Por lo tanto, el objetivo 
de esta investigación es recomendar alternativas para encriptado dinámico con inyección de ruido, usando inteligencia ar-
tificial (IA), porque ello puede confundir a los ciberdelincuentes. Se estudian aspectos relacionados y aunque no se utiliza 
computación cuántica, se proponen algunas medidas. El diseño de la metodología consiste en la adaptación del algoritmo 
ChaCha20, combinado con el método random Caesar II (fusión que ha sido denominada: random noisy ChaCha20), con 
el propósito de incrementar la seguridad de los textos cifrados. Este nuevo esquema es comparado con otras alternativas 
aleatorias ruidosas, tales como random noisy DES, random noisy 3DES, random noisy AES-256 y random noisy Blowfish, 
obteniendo como resultado textos cifrados dinámicos, aunque limitados por valores de la tabla ASCII. En conclusión, las 
nuevas propuestas podrían ser difícil descifrar para los cibercriminales.

PALABRAS CLAVE: aplicaciones de IA; criptografía; cifrado de datos dinámico; cifrado con inyección de ruido.
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I. INTRODUCTION

A cybersecurity strategy [1]-[3] is considered inadequate 
if at least one of the methods is vulnerable to cybercrim-
inal attacks [4]-[8]. This situation can produce the theft of 
digital data [8]-[9]. When it occurs in practical domains, 
it may cause significant losses in the finances of orga-
nizations [4]-[5], [8], [10]-[11]. Most of these cases [12]-[17]

refer to fraudulent telephone calls or phishing, social 
networking platforms, bank systems, large markets or 
retail supply chains, electrical energy network business, 
detecting of fraudulent financial on sector situations, 
and several cases of e-commerce in organizations [4]-[5]. 

Several proposals have been developed for combating 
the theft of digital data. These strategies can be classified 
into three main approaches: updating cybersecurity 
strategies [4] on a regular basis, implementing dynam-
ic encryption methods [5], and using noisy injection on 
ciphertext [5]-[7], [9]-[10]. This scheme has demonstrated 
potential in certain practical domains. 

This research focuses on encryption methods [8] that 
utilize noisy injection strategies [5]-[7]. By computing 
mathematical equations or statistics, plaintext (Si) is 
transformed into ciphertext (Ci) [8], which can only be 
accessed by authorized parties [10]-[11]. The Si denotes 
the original input sequence, and the Ci is the encrypt-
ed output. When encryption method produces distinct 
results with the same plaintext input is considered dy-
namic, whereas static encryption schema yields the 
same result every time [8]. 

These algorithms can be classified as symmetric, where 
a single secret key is used, or asymmetric, where a pair 
of keys (private and public) are employed [8]. 

The process of translating plaintext into ciphertext is 
known as data encryption, and the inverse process is 
called data decryption [8]-[10], [14], [18]. 

Asymmetric encryption algorithms, including RSA 
(Rivest-Shamir-Adleman) [3], [5]-[6], [8], [13]-[14], [19]-[27], 
ECC [5]-[6], [8], [19]-[23], [28]-[31], and ElGamal [13], [19]-[21], 
require both private and public keys to operate. Recent 
research [5], [8], [11] have reported dynamic encryption re-
sults when these asymmetric alternatives were employed. 

In this work, the asymmetric algorithms have not been 
experimented because it can be considered a future 

work. Therefore, these schemes are not described in this 
research. 

On the other hand, there exists also various symmet-
ric key cryptography algorithms, such as DES (Data 
Encryption Standard) [3], [13]-[14], [22]-[23], [27], [32]-[33], 
TripleDES or 3DES (Triple Data Encryption Standard) 
[14], [21]-[23], [34], Blowfish [22]-[23], [35]-[38], ChaCha20 [38]-
[39], and AES (Advanced Encryption Standard) [13], [21]-
[23], [26]-[27], [40]-[41], to name a few. In case of the AES 
scheme, in this research AES-256 version [38], [40]-[41] 
has been employed. 

According to reference [22], AES is a symmetric block 
cipher that can operate with varying block sizes and 
supports key lengths of 128, 192, and 256 bits. However, 
DES encrypts 64 bits of plaintext into 64 bits of cipher-
text, employing substitution and permutation tech-
niques through a series of rounds, and decryption is 
performed by reversing the process. Besides, the em-
ployment of 64 bits, it is considered insufficient for se-
cure environments, making it relatively easy to break. 
As a result, the 3DES was developed as an enhancement 
to DES. Blowfish is a symmetric algorithm that uses a 
variable-length block cipher, supporting key lengths 
between 32 and 448 bits [22]-[23]. Similarly, Blowfish is 
commonly implemented with a 64-bit block size. 

On the other hand, ChaCha20 [39] is a symmetric algo-
rithm that succeeds Salsa20 and it is built on the ARX 
cryptographic primitive. ChaCha20's keystream gener-
ation algorithm consists of three operations: addition 
modulo 232, constant distance left bit rotation, and bit-
wise XOR operation. These operations allow ChaCha20 
to achieve high speed and security. ChaCha20 takes a 
128-bit or 256-bit key, a nonce, and a 128-bit constant 
to produce a 512-bit keystream. ChaCha20 introduces 
a slight modification to its internal state matrix, making 
it more resistant to certain types of attacks and often 
faster in software implementations. 

The experimentation with the Salsa20 algorithm is be-
yond the scope of this research and may be pursued in 
future work.

In this context, some research [5], [8] have revealed that 
symmetric encryption algorithms can generate static ci-
phertext outputs. It does not mean that these schemes 
are vulnerable [5]. 

https://doi.org/10.20983/culcyt.2025.3.2.2
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However, there exists some standard encryption alterna-
tives that they have been threatened by quantum comput-
ing [8], [22]-[23], [42]. In contrast, other researchers [43]-[45] 
caution that the AES and RSA algorithms are also vulner-
able to the emergence of quantum computing [8], [22], [42]. 

Several aspects of this topic are examined in this pa-
per. However, a quantum computing alternative has not 
been employed, as other measures are proposed here, 
which are applied to variants of symmetric algorithms 
[5]. In this context, the implementation of a noisy in-
jection strategy [5]-[7] is also highly recommended for 
enhancing encryption security. 

Noisy injection involves the addition of characters from 
ASCII or UTF-8 encoding to a plaintext or ciphertext 
that exceed the original input message, introducing ex-
traneous elements [8]. 

One of the hypotheses explored in this paper is that 
noisy random strategies have the potential to mislead 
cybercriminals [5], [8]. These noisy injection strategies 
[5]-[7] often rely on artificial intelligence (AI) [5]-[8], [10]-
[11], [46]-[47], given the existence of AI-based cryptogra-
phy [1]-[4], [8], [10]-[11], [16]-[17], [24], [48]-[50]. 

References [10], [46]-[47] mention that AI's purpose is 
to make the machine think [8]. In this regarding, the 
heuristic methods [5], [8], [10] can help us, because these 
methodologies consist in a previously defined set of 
rules for solving a problem. They can be used for imple-
mentation of structured models such as decision tree 
[51]-[53], graphs [53]-[55], to mention few. 

Furthermore, random methods in AI [10], [56]-[59] in-
volve selecting numbers randomly, either with or with-
out replacement [8]. These techniques can be applied to 
intelligent models like genetic algorithms (GAs) [1]-[2], 
[9]-[10], [16]-[17], [56], [59]-[62], Monte Carlo (MC) algorithms 
[59], and artificial neural networks [57], [63]-[64], and other 
applications [65]-[68]. Several authors have explored AI-
based cryptography alternatives [1]-[4], [8], [10]-[11], [14], 
[16]-[17], [24], [27], [48]-[50], [60]-[62]. These schemes include 
random noisy strategies that were tested [4], [9]-[11] on 
different platforms, including Microsoft Windows [69] 
with Python 3 [70], and Android [71] with PyDroid3 [72], 
using various Python libraries [73]-[75].

For a comprehensive overview of cryptography with AI, 
see [50]. Reference [48] analyzes the application of GA in 

the determination of efficient parameters for a specific 
model of pseudorandom number generators, known as 
Congruent Linear Generators (CLGs), while [3] focuses 
on asymmetric and symmetric cryptographic methods.

In [58], a study on pairing functions for AI-driven cryp-
tography was conducted. Subsequently, the same au-
thor [16] have published a novel investigation on GAs 
in cryptography, specifically contributing to the field of 
e-commerce [16]. Another research [24] highlights a re-
view of side channel attacks and countermeasures on 
ECC, RSA, and AES cryptosystems. In reference [49], a 
survey trends in lattice-based cryptographic schemes is 
presented, including some recent fundamental propos-
als for the use of lattices in computer security, challeng-
es for their implementation in software and hardware, 
and emerging needs for their adoption. 

Following conventional methodologies, some studies 
[1], [62] have investigated the application of genetic algo-
rithms in cryptography. Additionally, reference [60] has 
presented an advanced optimization algorithm tailored 
for cryptanalysis. On the flip side in [61] reveals that genet-
ic algorithms can successfully break certain simple cryp-
tographic ciphers. In [27], a similar vein is examined the 
application of genetic operators to symmetric cryptog-
raphy using GAs. Moreover, [49] introduces a post-quan-
tum lattice-based cryptography implementations.

Noisy injection strategies [4]-[11] encompass multiple ap-
proaches that they can be classified into three distinct 
categories. 

Firstly, the use of pseudo-hexadecimal format is consid-
ered. In this regard, the 'Noised' random pseudo-hexadec-
imal GAs methodology has been detailed in [9]-[10]. This 
scheme, based on a genetic algorithm was introduced as a 
dynamic encryption solution. However, due to the report-
ed disadvantages of pseudo-hexadecimal GAs, a successor 
was presented in [10], known as "Noised" random pseu-
do-hexadecimal (without GAs). In [8], four dynamic al-
ternatives based on the pseudo-hexadecimal scheme were 
introduced, termed "noisy random pseudo-hexadecimal" 
strategies. These strategies involve injecting noise into 
ASCII characters to confuse cybercriminals when a new 
pseudo-hexadecimal format has been recommended. The 
application of these schemes is restricted to plaintext. 

The second category includes the use of AI-based noisy 
injection paired with the 1-NN rule, as referenced in 
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[46]-[47], [65]-[67]. In this regard, the 'Noised' random 1-NN 
with hexadecimal encoding based on AI has been in-
troduced in [11]. Similarly, the combination of "Noised" 
random pseudo-hexadecimal format with 1-NN rule 
was explored in [68]. Both methodologies have revealed 
that these schemes can increase the safety of digital data 
with double noisy injection over ciphertext outputs. 
Even though it will have to sacrifice disk storage space. 
These strategies were also applied to plaintext. In this 
study, the pseudo-hexadecimal schemes were not ex-
plored, but it may be considered for future research.

In this context, random Caesar II mod 120 [4]-[7], [11] was 
employed in the third category for noisy injection over 
plaintext [4]-[5], [11], as well as being applied on cipher-
text [5]-[7], which it is generated by standard encryption 
algorithms. This approach is termed a random noisy 
strategy [5]-[7]. 

Some studies [4]-[11] indicate that dynamic encryption 
methodologies based on random noisy schemes can 
increase the security of ciphertext outputs by adding 
noise and redundancy [5], [9]-[10]. In AI-based practical 
domains [46]-[47], [55]-[56], [63], [65]-[67], the presence of in-
complete or noisy patterns [76]-[77] can reduce the sys-
tems' global accuracy [66]. Hence, the noisy injection 
alternative is considered a good indicator because it can 
mislead cybercriminals. 

In contrast to the traditional Caesar algorithm [4], [9], 
[13]-[14], the random Caesar cipher is distinguished by 
its use of dynamic encryption with AI, as noted in ref-
erence [5], which it emphasizes its use of heuristic meth-
ods. While the traditional Caesar cipher relies on a fixed 
shifting value K, as expressed in equation (1), in refer-
ences [13]-[14]:

Ci = Si + K mod 26 (1)

In this situation, the random Caesar cipher utilizes 
varying shifting values (Ki) for each character Si, cho-
sen randomly with replacement. 

Random Caesar's mode of operation is determined by 
the N value in the terms of equation (2):

Ci = Si + Ki mod 26 (2)

Unlike the traditional Caesar cipher, which uses mod 
26 and is limited to 26 characters, the random Caesar 

cipher offers more flexibility. Hence, the mod N in ran-
dom Caesar method is potentially dynamic. It uses an 
initial AI-based learning phase [8]-[10] that is recom-
mended for selecting alphabet, but it has been narrowed 
down to three modes in recent research [4], [6], [9], [11], 
including the random Caesar I (with mod 9 and mod 
255) [6], random Caesar II with mod 95 [4], [9], [11], and 
random Caesar II with mod 120 [4]-[7]. In these terms, 
the mod N value determines the size of the encryption 
alphabet and the maximum value in the Ki vector. For 
N = 95, the range is 32 to 126, encompassing characters 
like space and '~'. The N = 120 value, it spans 30 to 150. 
Any other N value means Ki is between 0 and N. These 
values are not ordered according to their ASCII code 
(ordinal) because they have been selected randomly.

The schemes outline the rules for selecting alphabets 
based on random principles and the use of a heuristic 
methods to derive the best Ki vector. This situation as 
well as the use of AI have already been discussed in oth-
er studies [4]-[11], [68]. However, it is explained below. 

The random Caesar schema's second phase is designed 
to confuse cybercriminals [4], and involves calculating 
the final package using the equation (3), in reference [5]:

FinalPackage = Ci & Ki & OrdChr(Ci) (3)

The & operator denotes the concatenation function, and 
the OrdChr procedure appends the same character of 
Ci to the end of the package when operating in N = 120 
mode. In other cases, OrdChr converts Ci to its ordinal 
value. 

This methodology is specifically designed for plaintext 
encryption as a dynamic approach [4], whereas studies 
[5]-[7] have incorporated the random Caesar II mod 120 
as a random noisy strategy. Eight random noisy encryp-
tion methods are described in [5], including: random 
noisy DES, random noisy 3DES, random noisy RC4, 
random noisy Blowfish, random noisy WEP, random 
noisy AES, random noisy RSA-2048, and random noisy 
ECIES SECP-256-R1. These proposals combine stan-
dard encryption algorithms with the addition of noisy 
injection through random Caesar II mod 120. 

The concept of random noisy GOST was explored in [6], 
and the random noisy Camellia was highlighted in [7]. 
Variants of random noisy strategies [4] that incorporate 
noisy injection have been reported to effectively cam-
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ouflage ciphertext [5]. Examples include reduced ran-
dom Caesar [4]-[5] and reduced random mutation [4]. 

The main objective of these schemes, as outlined in 
reference [4], consists into camouflage and compress at 
least ⅓ of the ciphertext. The reduced random Caesar 
strategy has been applied on plaintext [4] and ciphertext 
[5]. In case of the reduced random mutation [4] has only 
been employed using plaintext. 

We did not experiment with these reduced random and 
mutation strategies here, as they may be addressed in 
future work. 

In this work, only four random noisy strategies based 
on standard symmetric encryption algorithms have 
been evaluated, including random noisy DES, random 
noisy 3DES, random noisy AES-256, and random noisy 
Blowfish. Similarly, a new alternative was developed 
and it is introduced here as random noisy ChaCha20. 

Noisy injection scheme based on random noisy strate-
gies [4]-[7] can be applied to plaintext [4] or ciphertext [5]-
[7]. They are recommended due to its strong correlation 
with dynamic encryption performance. The impact of 
quantum computing on the security of these schemes 
has not been studied here [5], [8]. 

In this context, random noisy strategies have been rarely 
explored in the literature. As a result, the vulnerabilities 
of these schemes have not been thoroughly investigat-
ed. However, there exist some dynamic encryption ap-
proaches that employ asymmetric algorithms [3], [24], [26], 
[28]-[29], [43]-[44], pseudorandom number generation [40], 
chaotic maps [18], optical pattern recognition [15], algo-
rithms based on mutation procedures [4], [59], genetic al-
gorithms [1]-[2], [8]-[10], [16], [27], [56], [58], [62], cryptography 
based on heuristic methods [54], and pseudo-hexadec-
imal encoding [8]-[10]. These heuristic pseudo-hexa-
decimal approaches have inspired the development of 
our proposed random noisy ChaCha20, as its learning 
phase is derived from these existing schemes but ex-
cluding pseudo-hexadecimal encoding. 

Given that random noisy strategies have shown promise, 
this research continues the work of [5]-[7], by examining 
the ChaCha20 encryption algorithm's potential when it is 
applied to ciphertext, a gap in existing research that could 
benefit organizations employing ChaCha20. Besides, 
this situation opens opportunities to the organizations, 

regarding the employment of noisy injection based on 
ChaCha20 scheme. We focus on cybersecurity strategies 
that utilize noisy random encryption methodologies, spe-
cifically exploring the application of noisy injection on 
ciphertext generated by standard encryption algorithms 
with the purpose of misleading cybercriminals [8]. 

The scope of this study was limited to two classes of sit-
uations. 

First, we compared five standard encryption algorithms 
(DES, 3DES, AES-256, Blowfish, and ChaCha20) as 
static encryption schemes for benchmarking against 
other research findings [5]-[7]. 

The random noisy ChaCha20 scheme was also imple-
mented as a new method for comparison with other 
strategies like random noisy DES, random noisy 3DES, 
random noisy AES-256, and random noisy Blowfish, 
which were evaluated for their effectiveness in noisy in-
jection over ciphertext. 

These strategies involve using random Caesar II mod 
120 [4], being applied to ciphertext previously encrypted 
with a standard algorithm. Both objectives here focus 
on dynamic encryption as an alternative for random 
performance. 

This study adds to the empirical foundation of AI-based 
cryptography, particularly since random noisy strate-
gies have been rarely studied. 

Recent research [4]-[5], [9]-[11] have noted that the ran-
dom Caesar II method with mod 255 [4] can produce 
ciphertext values outside the ASCII table range [5]. 
However, in practical domains where random noisy 
strategies were employed [5], these issues have not been 
encountered. 

The random noisy encryption strategies were previous-
ly assessed with five-fold cross-validation [5]-[7]. This 
work expresses their performance in terms of average 
or global accuracy [46]-[47], [65]-[66]. Here, we report on 
the experimental results of an extensive investigation 
into digital data theft cases. This study examined sit-
uations where the use of at least one inadequate static 
encryption method led to vulnerabilities [5]. 

Initially, the experiments were focused on replacing of 
the static encryption scheme for recommending the 

https://doi.org/10.20983/culcyt.2025.3.2.2


DOI: 10.20983/culcyt.2025.3.2.2

19CULCYT. Cultura Científica y Tecnológica
 Vol. 22  |  no. 3  |  September-December 2025

E. Rangel et al.  |  ChaCha20 Encryption Algorithm Security 
Enhancement through Artificial Intelligence-Based Random Noisy 
Injection: A Case Study  |  RESEARCH ARTICLE

ISSN (electronic): 2007-0411

random noisy strategies as dynamic encryption alterna-
tive [4]. Moreover, examples of ciphertexts produced by 
random noisy encryption schemes, they are included in 
this research. 

The assessment of these approaches involved five sam-
ples and a modified cross-validation method [4]-[5], [10]. 
Furthermore, the application of noisy injection on ci-
phertext output is suggested as it proves to be a reliable 
indicator of dynamic encryption efficacy. 

Besides, a novel approach named here as random noisy 
ChaCha20 strategy is proposed as a dynamic encryp-
tion alternative. The results are also compared against 
four random noisy schemes based on the DES, 3DES, 
AES-256, and Blowfish algorithms.

II. METHODOLOGY

The use of static encryption algorithms as a replace-
ment for existing cybersecurity strategies does not en-
sure the data protection for organizations. Reference [4], 
dynamic encryption approaches are suggested instead. 
This study examines the effectiveness of dynamic en-
cryption measures based on random noisy strategies [5], 
in preventing digital data theft. 

This research is considered experimental and explor-
atory because a novel random noisy ChaCha20 alterna-
tive is introduced here for the first time. 

This work required the use of hardware, software, and 
datasets. The experiments were conducted on a person-
al computer with a 2 GHz CPU, 4 GB of RAM, and 32 
GB of free disk space. The software implementation of 
these encryption methods, including DES, 3DES, AES-
256, Blowfish, and ChaCha20, as well as, the novel vari-
ants based on random noisy strategies [5] was carried 
out using Microsoft Windows 10 [69] and Python [70]. 

To compare our results with those in [5]-[7], we repeat-
ed some experiments on a mobile computing device 
with the same hardware features as the personal com-
puter mentioned earlier, but with Android 9 [71], as 
the operating system and PyDroid3 [72], for software 
development. Our experiments showed no significant 
differences. 

Our datasets are training samples (TS) [6]-[7], [46]-[47], [65] 
with 1000 exemplars, being selected randomly. Each 

row in the dataset is a pattern with five columns or fea-
tures. 

This data comprises encryption and decryption details, 
including ciphertext (Ci) represented as a pair (Test1, 
Test2), as well as encryption time (TC), decryption 
time (TD), error rate (Error), and class label. Specifically, 
the pattern is structured as TP = [ (Test1, Test2), 
TC, TD, Error, Label ], enabling comparison with 
other research findings [7]. In Table 1, two ciphertext 
examples are shown (Test1 and Test2). The Label or 
plaintext (Si) sequences include the noisy characters, 
which were represented in Python as follows:

Si = ''.join([chr(9619),'W','e','l','c','o', 
'm','e',chr(9619),chr(65533)])#'▓Welcome▓?'

This Label feature represents the plaintext (Si), simu-
lating a password with added noise characters (i.e. the 
ordinals 9619 and 65533 values). 

Encryption and decryption times were calculated in 
milliseconds, while the TC, TD, and Error features were 
represented as double precision values. 

The encryption strategy transforms the plaintext se-
quence into a ciphertext result, structured as a tuple 
(Test1, Test2), while computing TC, enabling the ob-
servation of dynamic encryption results. The ciphertext 
sequence is decrypted while TD is calculated. Both se-
quences are stored in TS, with their TD, TC, and Error 
rates included in a structured pattern format. 

This error rate is calculated according to the number 
of characters that they are incorrect. If the encryption 
strategy's output ciphertext, it does not match the plain-
text (Si), the error rate is determined by the extent of 
the errors within Si. In this context, if a ciphertext 
of eight characters corresponds to a plaintext of eight 
characters and has an error value of 0.5, it indicates 
that four characters from Test1 and/or Test2 have not 
been decrypted correctly. 

The ciphertext and plaintext are sequences of characters 
in ASCII or UTF-8 encoding, with a maximum length 
of 255 characters. Unlike other algorithms, 3DES and 
Blowfish have limitations in processing block sizes, 
which limited the experiments with Blowfish to a block 
size of 13 characters and 3DES to a block size of 22 char-
acters. The selected plaintext sequences in our experi-
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ments are intended to simulate passwords. In real-world 
applications, passwords are typically recommended to 
have a length between 8 and 16 characters. In our exper-
iments, we were able to simulate passwords of up to 255 
characters in length. However, we encountered an issue 
with the Python 3 libraries used for Blowfish and 3DES 
encryption, which truncated the plaintext sequences to 
13 and 22 characters, respectively. To address this issue, 
we performed piecewise encryption of the plaintext in 
blocks of 13 and 22 characters for Blowfish and 3DES, 
respectively, allowing us to evaluate the algorithms on a 
more equitable basis.

Another alternative for addressing this disparity, the 
research employed ciphertexts filled with random hexa-

decimal values to ensure a more equitable comparison. 
All this information has been used for converting it in 
new format based on cross-validation modification [4]-
[7]. This updated TS format was employed in each en-
cryption strategy, separately. 

For improving the results understanding, in Table 1, the 
arithmetic mean and its standard deviation are shown, 
using a plaintext values as above mentioned. 

Finally, the plaintexts were processed separately with 
the encryption algorithms, using the test set (TS) cre-
ated for each algorithm, including those with random 
noisy strategies, under equal terms. 

TABLE 1
 Encryption and Decryption Times with Error Estimates 

Encryption 
method TC TD Error Test 1 Test 2

DES 1.14 
(0.5087)

0.19 
(0.0187)

1 (0) d 5 3 5 c 3 3 7 b e 1 d 9 4 d b 5 b 9 4 0 b 7 5 b c e 1 2 4 d c d a 
9 3 f f a 3 5 7 9 1 b f 0 7

d 5 3 5 c 3 3 7 b e 1 d 9 4 d b 5 b 9 4 0 b 7 5 b c e 1 2 4 d c d a 
9 3 f f a 3 5 7 9 1 b f 0 7

ChaCha20 7.03 
(3.6519)

0.39 
(0.0118)

0 (0) e 1 e 3 a 0 b a 1 0 4 d 5 8 0 f f 5 1 b a 4 2 c f 6 4 d 7 f 6 a 1 d e 1 e 3 a 0 b a 1 0 4 d 5 8 0 f f 5 1 b a 4 2 c f 6 4 d 7 f 6 a 1 d

AES-256 7.31 
(3.7093)

0.61 
(0.0169)

0 (0) 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 1 9 
4 2 1 7 8 0 f c 4 0 c 5 9 f 1 4 7 9 6 a 5 9 8 1 1 5 d 8 e 5 1 3 9 f 

6 f 9 6 6 6 f 6 7 c b 3 0 f c d a 0 1 f 2 2 7 3 9 e e d a

3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 1 9 
4 2 1 7 8 0 f c 4 0 c 5 9 f 1 4 7 9 6 a 5 9 8 1 1 5 d 8 e 5 1 3 9 f 

6 f 9 6 6 6 f 6 7 c b 3 0 f c d a 0 1 f 2 2 7 3 9 e e d a
Blowfish 7.55 

(3.7931)
0.64 

(0.0373)
0 (0) 4af747eaabe473251f42200cf8fda7f2 4 a f 7 4 7 e a a b e 4 7 3 2 5 1 f 4 2 2 0 0 c f 8 f d a 7 f 2

3DES 7.68 
(3.9388)

0.50 
(0.0184)

0 (0) d 5 3 5 c 3 3 7 b e 1 d 9 4 d b 5 b 9 4 0 b 7 5 b c e 1 2 4 d c 
6 2 0 c 5 1 e 2 3 8 0 a 3 d 5 c

d 5 3 5 c 3 3 7 b e 1 d 9 4 d b 5 b 9 4 0 b 7 5 b c e 1 2 4 d c 
6 2 0 c 5 1 e 2 3 8 0 a 3 d 5 c

random noisy 
DES

1.63 
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0.58 
(0.0389)
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random noisy 
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‪ ¶ ¡ i ¡ ‪ ̂  ‪ § A § Ç a Ç j 5 j { J { ‘ / ‘ õ ” õ ¿ ‹ ¿ š h ‪ ‪ * ‪ 
ð Š ð Ê ” Ê b . b Õ q Õ y B y ‰ # ‰ ̧ ‚ ̧  ́  S ́  À ‪ À ‪ * ‪

random noisy 
3DES

8.45 
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0.67 
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0 (0) è „ è ̈  s ̈  ̧  … ̧  ‪ h ‪ ö “ ö ¢ o ¢ ‡ T ‪ ‪ ̀  ‪ ‪ 4 – ¿ Z ¿ ¥ t 
¥ « G « µ | µ Z & Z Î j Î ÷ • ÷ a , a î Œ î „ K ‪ ‪ S ‡ t D t Ï m Ï 
½ † ½ ¶ ‪ ¶ ¦ D ¦ î ‹ î ³ N ³ c 2 c { I {‪ l‪ Ä ̀  Ä ¹ V ¹ Š T Š § u 
§ S # S ª G ª · ‚ · § v § Î i Î ̀  . ̀  Á ‪ Á ] % ] Å • Å » Z » ‹ X ‹ Ô 

p Ô Š U ‪ ‪ 8 ›

ä ‪ ä ‪ Z ‪ o < o ¾ ‰ ¾ ‪ : ‪ Æ “ Æ i 6 i x A x Ç e Ç ¢ = 
¢ † U † Í i Í ° w ° ‪ Z ‪ ò ‪ ò » Y » ‹ V ‹ Ö t Ö | C | d 0 d j : j ̄  
M ̄  h 1 h ¹ „ ¹ ± O ± ³ P ³ Å ̀  Å w F w X & X È ” È Ï k Ï ó ‪ ó 
i 3 i [ ) [ „ T „ å ‚ å X # X Œ [ Œ ù ” ù ¹ ‡ ¹ Â ‪ Â W W ” d ” ò ‘ 

ò Š W Š ± M ± T T É f É
random noisy 

AES-256
8.46 

(3.9351)
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IMPLEMENTING STANDARD SYMMETRIC 
ENCRYPTION ALGORITHMS

Experiments began by using standard symmetric encryp-
tion algorithms, such as DES, 3DES, AES-256, Blowfish, 
and ChaCha20, as our primary strategy. They were exper-
imented as static encryption schemes being applied on 
plaintext for results comparison with other research [5]-[7]. 

These experiments were run on five training samples 
with the above-mentioned details, and each encryption 
algorithm, it was assessed separately using a modified 
cross-validation method [4]-[5]. These standard en-
cryption algorithms were implemented using Python 
language [70]. For this it was necessary to install some 
package or libraries such as cryptography [73], pycrypt-
odome [74]-[75], [76], and pycrypto/pycryptor. Therefore, 
it needs to be imported into the source code and the Si 
values must be initialized as follows:

from cryptography.hazmat.primitives import 
padding 

from cryptography.hazmat.primitives.ciphers 
import Cipher, algorithms, modes 

from cryptography.hazmat.backends import 
default_backend, from Crypto.Cipher import 
DES

Si = ''.join( [ chr(9619), 'W', 'e', 'l', 'c', 
'o', 'm', 'e', chr(9619), chr(65533) ] )

Given that Si was saved, we can proceed with the anal-
ysis. The ciphertext generated using the DES algorithm 
can be obtained through the following operation: 

C i = ( ( A ( K e y . e n c o d e ( ) , M o d e ) ) . e n c r y p t ( p l a i n 
t e x t ) ) . h e x ( ) p r i n t ( C i )

In the case of ciphertext produced by the 3DES and 
Blowfish algorithms, the computation operation is: 

Ci=(Ri.update(plaintext)+Ri.finalize()).hex()

print(Ci)

In the same way, the ciphertext for the AES-256 encryp-
tion alternative, it can be calculated as follows: 

Ci=(IV.encode()+(Ri.update(plaintext)+ 
Ri.finalize())).hex()

print(Ci)

Below is the ciphertext obtained through the ChaCha20 
algorithm: 

Ci=(Ri.update(plaintext)+Ri.finalize()).hex()

print(Ci)

Here, the A component represents the algorithm used, 
while the encoded Key parameter is the secret key. The 
IV value is the initialization vector, while that the Mode 
argument specifies a valid operation mode for the al-
gorithm, and the Nonce refers to the ChaCha20 nonce 
value that it was employed. The plaintext argument is 
the encoded Si, and the encrypt() procedure returns 
a ciphertext object, which is a class component. In this 
context, N is the maximum byte length of a character se-
quence. The Ri vector is a partial ciphertext object that 
may not have padding or may be incomplete. The Qi 
component is the padding applied. The updated() and 
finalize() procedures are necessary to complete the 
encryption process. Finally, the hex() function is used 
to translate byte values into hexadecimal format. Based 
on these terms, the computation of valid parameters for 
the DES algorithm ciphertext generation is as follows: 

Key = "00000001" 

A = DES.new 

N = 8 

Mode = DES.MODE_ECB 

plaintext=Si.encode()+(b"\x00"*(N–len(Si.
encode())%N))

The valid parameters for computing ciphertext with the 
Blowfish algorithm can be obtained through: 

Key = "00000001" 

A = algorithms.Blowfish 

N = 16

Mode = modes.ECB() 

Ri=Cipher(A(Key.encode()),Mode,default_
backend()).encryptor() 

plaintext=(Si+""+str("".join([" " for k 
in range(0,int(N-len(Si.encode()))) ] )) 
).encode()

To produce ciphertext with 3DES, the valid values can 
be obtained through: 
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Key = "000000000000000000000001" 

A = algorithms.TripleDES 

N = 24 

Mode = modes.ECB() 

Ri=Cipher(A(Key.encode()),Mode,default_
backend()).encryptor()

plaintext=(Si+""+str("".join([" " for k 
in range(0,int(N-len(Si.encode()))) ] )) 
).encode()

The valid values for ciphertext generation using the 
AES-256 encryption version are as follows: 

Key = "00000000000000000000000000000001" 

A = algorithms.AES ; N = 256 

IV= "0000000000000001" 

Mode = modes.CBC(IV.encode()) 

Ri=Cipher(A(Key.encode()),Mode,default_
backend()).encryptor() 

Qi = padding.PKCS7(N).padder() 

plaintext=Qi.update(Si.encode())+ 
Qi.finalize()

To obtain ciphertext using the ChaCha20 algorithm, 
the valid values are: 

Key = "00000000000000000000000000000001"

Nonce = "0000000000000001"

A = algorithms.ChaCha20 ; N = 32

Mode = None 

plaintext = Si.encode() 

Ri=Cipher(A(Key.encode(),Nonce.encode()), 
mode=None,backend=default_backend()).
encryptor()

These statements should be added to the source code 
before calling Ci, as necessary.

RANDOM NOISY ENCRYPTION STRATEGIES 

A second approach to encryption involves the use of 
random noisy alternatives [5], for dynamic data encryp-

tion. Reference [4] offers a promising way to increase the 
noise in ciphertext outputs. 

These strategies [5] have been applied to ciphertexts 
generated by standard encryption algorithms, focus-
ing on four specific cases: random noisy DES, random 
noisy 3DES, random noisy Blowfish, and random noisy 
AES-256. Additionally, random noisy ChaCha20 is in-
troduced as a new proposal in this study. 

The five random noisy strategies were developed in 
Python [70] and evaluated using a noisy injection appli-
cation that applies random Caesar II mod 120 to the 
ciphertext generated by each standard encryption al-
gorithm. The goal was to compare results with existing 
research [5]-[7]. 

Each encryption algorithm was evaluated separately 
on the five TS using an iterative process with five rep-
etitions of cross-validation [4]-[5]. We applied modified 
cross-validation to calculate the global average and 
standard deviation for each encryption strategy. 

The novel proposals, as described in [5], involve noisy 
injection into ciphertext, and the procedure for com-
puting random noisy strategies is detailed in [5]-[7] such 
as follows:

R a n d o m N o i s y i  =  C h a r  (  O r d  (  S t a n d a r d E n 
c r y p t i o n i  )  +  O r d (  K i  )  )  &  C h a r  (  K i  )  &  
C h a r  (  S t a n d a r d E n c r y p t i o n i  )

m o d  1 2 0

(4)

This calculation was optimized by substituting ci-
phertext for plaintext, as demonstrated in [4]. The cal-
culation is adjusted to mod 120 since only character 
types are stored in RandomNoisyi (FinalPackage). 
Several random noisy schemes have been presented 
in previous work [5]. We employed four strategies for 
obtaining StandardEncryptioni ciphertext in this 
research. 

The random noisy ChaCha20 approach was implement-
ed and computed as follows: 

R a n d o m N o i s y C h a C h a 2 0 i  =  C h a r  (  O r d  (  S t 
a n d a r d C h a C h a 2 0 E n c r y p t i o n i  )  +  O r d (  K i  
)  )  &  C h a r  (  K i  )  &  C h a r  (  S t a n d a r d C h a C h 
a 2 0 E n c r y p t i o n i  ) 

m o d  1 2 0

(5)
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In this context, the + operator is used for the shifting func-
tion, and the & operator is used for concatenation. The  Ord 
function maps a character or integer to its corresponding 
ordinal value, while the Char function translates its argu-
ment into the corresponding ASCII or UTF-8 encoding. 
The Ki vector contains the random (integer) shifting val-
ues. The StandardEncryptioni parameter represents 
the ciphertext obtained from a standard encryption algo-
rithm (e.g., DES, 3DES, Blowfish, and AES-256), as de-
scribed in [5]. The StandardChaCha20Encryptioni 
argument signifies the ciphertext resulting from the 
ChaCha20 algorithm. These strategies were applied sepa-
rately. RandomNoisyi refers to the FinalPackage gen-
erated by applying a random noisy strategy, as mentioned 
in [5]. On the other hand, RandomNoisyChaCha20i 
represents the FinalPackage, resulting from the use of 
random noisy ChaCha20. 

The random noisy approaches involve a two-step pro-
cess: first, the standard encryption algorithm is applied 
to the plaintext, and then random Caesar II mod 120 is 
applied to the ciphertext generated in the first step [5]-[7]. 

As noted in [5], it's essential to distinguish this fusion of 
techniques from double encryption using different algo-
rithms, which is not the focus of this research. Applying 
multiple standard encryption algorithms sequentially could 
introduce vulnerabilities, making it susceptible to decryp-
tion through computational methods like iterative attacks. 

Based on other research [5], noisy injection should be 
strategically applied to the ciphertext to avoid reveal-
ing the location of the noise and raising unnecessary 
suspicion. When applied to only part of the ciphertext, 
cybercriminals would face the intricate challenge of 
pinpointing the noisy characters' locations, a task that 
remains formidable even in the field of quantum com-
puting because these random noisy strategies have not 
been yet studied.

These strategies involve the use of random Caesar II 
mod 120 [4]-[5], applied to ciphertext previously obtained 
through a standard encryption algorithm, thereby serv-
ing as dynamic encryption alternatives for random per-
formance [4]. 

Random noisy strategies for information encryption have 
proven effective in producing dynamic ciphertext, thus 
improving data security within organizations. Moreover, 
the random Caesar II methodology (with mod 120) is 

classified as an AI-based approach due to its use of ran-
dom and heuristic methods for Ki vector selection [5]. As 
a result, artificial intelligence was used in tandem with 
the heuristic method to select the Ki vector that pro-
duces maximum values for the encryption alphabet. The 
similarity in procedures between the heuristic method 
and genetic algorithms leads to the consideration of AI 
application. This situation and the employment based on 
AI, they have been already discussed by other research 
[4]-[11], [68]. However, the details are described as below.

Thereby, heuristic method is defined as a validation 
tool for the selected ASCII characters [5], [8], as outlined 
in reference [8]. A genetic algorithm (GA) is a random 
process that encompasses selection, crossover, and 
mutation phases, followed by an evaluation stage using 
a wrapper [9]-[10] or fitness function [10], [16], to assess 
each generation of the GA [1]-[2], [9]-[10], [16], [56], [59]-[62]. 
In these terms, the random Caesar methodology [4]-[5] 
relies on the GA selection procedure for selecting al-
phabets with mod 120 and its corresponding Ki vector 
of shifts. To ensure ASCII compatibility, Ki values are 
restricted to the range of 30 and 150, as maximum. 

In this context, the use of artificial intelligence in data 
encryption based on noisy injection has been ex-
plored in previous research [4]-[6], [8]-[10], [11], [68]. These 
studies explain the use of different alphabets, referred 
to as modules, with sizes of 9, 95, 105, 120, and 255. 
Each alphabet corresponds to a specific range of ordi-
nal values or characters in the ASCII table. However, 
using ordered ranks would make it relatively easy for 
cyber-criminals to decipher the encrypted data. To ad-
dress this issue, previous research has proposed several 
methods for generating optimal alphabets with random 
values corresponding to the ASCII table [5], [8]-[10]. These 
processes may involve the use of genetic algorithms, 
with or without the application of the nearest neighbor 
rule [11], [68], or even an abbreviated version using heu-
ristic methods [8]-[10], which are all part of pattern rec-
ognition and supervised learning. The use of artificial 
intelligence is therefore justified. 

On the other hand, although the standard version of 
the random Caesar II method exclusively uses a ran-
dom process with replacement, some studies [5], [8] sug-
gest that the Ki vector can be selected using a heuristic 
method. In this research, a previous learning phase is in-
troduced to generate the encryption/decryption alpha-
bet, using a procedure based on AI, similar to the noisy 
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random pseudo-hexadecimal (by shifting) scheme [8]. 
However, our ChaCha20-based proposal does not use 
the pseudo-hexadecimal format. Therefore, the same fit-
ness function as the noisy random pseudo-hexadecimal 
GAs or pseudo-hexadecimal by shifting version [8]-[10] is 
used to prevent the alphabet vector from having repeat-
ed characters, ensuring the quality of the encryption/de-
cryption. This ensures that the characters in the alphabet 
are not ordered according to their ASCII ordinal values, 
making it more difficult for cyber-criminals to decipher. 
In this context, the operation Ci = Si + Ki  refers to 
a substitution-based displacement, rather than a direct 
operation on the ordinal value. As explained in [13] and 
[14] with regard to the traditional Caesar algorithm.

On the other hand, the reduced random Caesar strat-
egy [4]-[5] can also employ the GA selection procedure 
with mod 120, and reduced random mutation [4], it uses 
the first and third stages of the GA model (i.e., selection 
and mutation). For both reduced random schemes, the 
Ki shifting range is constrained between 0 and 105 or-
dinal values to stay within the ASCII table limits. 

We excluded reduced random Caesar and reduced ran-
dom mutation from this study because they may be 
worth examining in future works. 

Regarding result evaluation, a modified cross-valida-
tion method [4]-[7] is proposed to internally bias the dis-
crimination process, building on previous discussions. 
This information can help organizations consider noisy 
injection as a viable security measure. 

In Table 1, the encryption (TC) and decryption (TD) 
times (in milliseconds) and estimated errors are pre-
sented, with some results rounded for consistency with 
[5], [7]. The TC and TD columns display average encryp-
tion and decryption times, with standard deviations 
in parentheses. Two ciphertext tests for each strategy 
demonstrate the potential for different results, even 
with the same plaintext, as above mentioned.

III. RESULTS AND DISCUSSION

The experiments were conducted using TS, and the es-
timated error, TC, and TD were computed individually 
for each encryption strategy, as previously described. 
A five-fold modified cross-validation [4] was applied to 
each TS, enabling a direct comparison with the results 
of other research [5]-[7]. 

The traditional cross-validation methodology [46]-[47], 
[56], [59], [63], [65]-[67] typically involves dividing the TS 
into five subsamples of roughly equal size (around 20% 
each), with one subsample serving as the test set (MC) 
for model evaluation [7]. The four subsamples not used 
for testing (approximately 80% of TS) because they are 
combined and used for model training. The trained 
model is then tested on the MC, which serves as new 
data for evaluation. This process is repeated five times 
to derive the standard deviation and the average or 
global accuracy [66]. In this research, the encryption 
algorithm's evaluation does not necessitate a training 
model with TS or evaluation with MC, rendering the 
traditional procedure inapplicable to data encryption 
or decryption. Consequently, the training and eval-
uation tasks were carried out before the ciphertext or 
FinalPackage was generated. 

For instance, the standard encryption algorithm is first 
applied to the plaintext to generate a ciphertext. It is 
then decrypted and both vectors are saved in the TS. 
In the case of random noisy strategies, the plaintext is 
encrypted using the standard encryption algorithm for 
producing a ciphertext. The heuristic method is then 
applied to emulate a partial phase training, leveraging 
the GA's random selection stage. 

The random Caesar strategy is used for partial training 
to obtain the Ki vector, which is then applied to the ci-
phertext for noisy injection in the FinalPackage. The 
encrypted sequence is decrypted, and both vectors are 
saved in the TS. 

The cross-validation method [4]-[5] has been modified 
to adopt a new approach that it does not rely on MC 
for assessing global accuracy [66]. Such is the case of the 
process for data encryption/decryption, experienced in 
this research. This cross-validation modification [4]-[7] 
consists in omitting the evaluation of the MC patterns. 
Instead, the error is computed, but only with a part of 
TS (i.e., only four subsamples are employed).

This operation is repeated five times, being extracted se-
quentially, approximately 20% of the information (i.e., 
20% of TS is omitted). 

By excluding part of the TS, this schema can simulate the 
estimated error in different environments, yielding a more 
convergent result with an optimistic bias (i.e., the value 
obtained may be better or equal when applied practically) 
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[7]. Moreover, it allows evaluating the estimated error and 
other numeric features of TS. On the basis that, if the de-
crypted ciphertext, it does not match the input plaintext 
(class identifier or Label), then the error percentage is 
calculated, according to number of coded characters that 
they could not be decrypted, to calculate their percentage.

The presented values of the Test 1 and Test 2 columns 
are approximations of the ciphertext, as they include 
non-printable characters. These characters may not dis-
play correctly on the screen due to their nature. Both 
tests were copied and pasted exactly from the file creat-
ed by Python.

The presence of non-printable characters can cause dif-
ferences in screen representation when formatted in MS 
Word (.docx) or PDF. However, the underlying ASCII 
or UTF-8 ordinal values of these characters remain con-
sistent across different document formats. This means 
that, although the visual representation may change, 
the actual values do not. This characteristic can actually 
enhance security, making it more challenging for cyber-
criminals to interpret the ciphertext. 

Similarly, as the traditional cross-validation does, the 
operation is repeated five times, extracting sequentially, 
a different subsample in each iteration. With purpose 
of calculating the average and standard deviation of 
each attribute or column of numeric type, which in this 
research, it was applied to the encryption times (TC), 
decryption times (TD), and error percentage, globally, 
without distinguishing the elements by class. Given 
that encryption ambiguity, it was observed during ex-
perimentation, the cross-validation operation was per-
formed without distinguishing elements by class. This 
aspect may be explored in future work, as it warrants 
further explanation and analysis. This situation has not 
had a detrimental effect on the global accuracy of the 
encryption strategies evaluated. 

Therefore, this study focused on experimenting with 
only two classes of situations. 

We started by investigating the performance of the five 
encryption algorithms (DES, 3DES, AES-256, Blowfish, 
and ChaCha20), using the static scheme on plaintext. 
This enabled comparisons with other studies [5]-[7]. This 
evaluation was focused on random noisy DES, random 
noisy 3DES, random noisy AES, and random noisy 
Blowfish, while random noisy ChaCha20 is presented as 

a novel strategy in this research. Thereby, the five random 
noisy strategies were experimented separately for noisy 
injection on ciphertext as dynamic encryption measure. 

After processing all the samples for each encryption 
strategy separately, the global average results were com-
puted using the novel updated cross-validation method 
[4]-[7], as explained above. 

The data is displayed in Table 1, where the standard 
deviation is also shown in parentheses. Columns TC 
and TD present the encryption and decryption times, 
respectively, measured in milliseconds, allowing for 
comparison with other research [5], [7]. This research 
terminated the iterative experimental process after pro-
ducing five repetitions of ciphertext for each encryption 
approach. The results in Table 1, they include the stan-
dard deviation in parentheses, which are based on the 
average of five sequential experiments evaluated using 
the updated cross-validation method [5]-[11]. The follow-
ing parameters were used for the standard encryption 
methods, as described below.

The parameters for the DES algorithm consisted of a 56-
bit key ('00000001'), UTF-8 encoding, ECB mode [20], 
and hexadecimal output for ciphertext. The DES algo-
rithm was implemented using the pycryptodome pack-
age in Python [74]-[75]. 

The TripleDES (3DES) algorithm employed ECB mode 
[20] with OpenSSL [21], [34], as the default backend and 
a 24-bit key ('000000000000000000000001') to generate 
ciphertext in hexadecimal format. Python's implemen-
tation of the 3DES algorithm leveraged the cryptogra-
phy component from the Cryptography libraries [73]. 

Regarding the Blowfish parameters, the ECB format [20], 
with default_backend() function based on OpenSSL 
schema, and the secret key of 16 bits with "00000001" 
values have been employed. The ciphertext outputs with 
hexadecimal encoding has been obtained. The imple-
mentation was also carried out with Cipher component 
of Python's cryptography package [73]. 

For AES-256 experiments, a 256-bit secret key ('0000
0000000000000000000000000001') and a 128-bit IV 
('0000000000000001') were employed. The implemen-
tation involved CBC mode [20], with OpenSSL [21], [34], 
and PKCS7 padding [21], [34], with 128 bits, generating 
ciphertext in hexadecimal format. Python's implemen-
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tation leveraged the Cipher module from both the cryp-
tography package [74]. 

In the ChaCha20 implementation, a 32-bit key ('0
0000000000000000000000000000001') and nonce 
('0000000000000001') were used with the default_
backend() function in 'None' mode. Python's standard 
settings and the cryptography package [73] were applied 
with hexadecimal encoding for ciphertext outputs.  

On the other hand, most of the experiments were suc-
cessful. Some tests with the DES algorithm and its ran-
dom noisy alternative were exceptions because have 
reported errors. The inclusion of characters outside the 
ASCII table, like ordinals: 9619 and 65533, in the input 
might be responsible. Although it's hard to control in-
put data in real applications, the information in Table 1 
suggests that most encryption strategies were effective 
in hiding this issue in the ciphertext.  

Reference [5] highlights that random noisy alternatives 
often struggle with controlling the maximum random 
value selected within the ASCII table. Notwithstanding 
the effectiveness of these strategies, an ASCII value 
can be repurposed as a character in another encoding 
scheme, like UTF-8. 

In our work, the use of mod 120, which keeps values 
within the ASCII range, meant that these situations did 
not occur. Apart from specific cases of noisy injection 
into the plaintext input, as mentioned previously. 

The encryption process utilizing ChaCha20 outper-
formed the 3DES, AES-256, and Blowfish,  symmetric 
algorithms, showing speeds 1.03 to 1.09 times faster. 
The difference in milliseconds ranged from 0.28 to 0.65 
(see Table 1). 

The encryption/decryption times are much faster us-
ing ChaCha20 algorithm, in this research was observed 
that this strategy supports plaintext or ciphertext with 
values greater than 255 characters. Thereby, it can be 
considered a secure schema if this situation is validated 
properly. 

Similarly, the 3DES alternative has not encountered 
any errors, but it is limited to supporting a maximum 
of 22 characters for both plaintext and ciphertext, 
similar to the Blowfish proposals with 13 maximum. 
In this research, DES has a character limit of 255 for 

plaintext or ciphertext. This was handled as mentioned 
above. 

Given the average error rate of 1.0% during data pro-
cessing, the DES alternative is not considered a reliable 
option. The presence of an error rate in the decryption 
process is a characteristic of the DES algorithm. This 
is a significant concern because DES is often proposed 
as a fast encryption procedure, but it is vulnerable to 
errors when incorrect data is entered, such as a charac-
ter outside the ASCII range in a password. In contrast, 
our novel proposal, random noisy ChaCha20, does not 
exhibit this error situation. 

In Table 1, several static ciphertext results are reported. 
These schemes have been obtained by standard encryp-
tion algorithms: ChaCha20,  DES,  3DES,  AES-256, and  
Blowfish. However, it does not mean, in all cases that 
they are vulnerable or insecure schemes.  

Besides, the best balance was obtained with random 
Caesar when it was applied to plaintext. Obviously, the 
improvement of encryption times with application on 
plaintext of the random Caesar II with mod 120 can be 
faster than the rest of strategies here evaluated. 

Experimental results showed an average encryption 
time of 0.14 milliseconds with a standard deviation of 
0.0108, and an average decryption time of 0.05 millisec-
onds with a standard deviation of 0.0011. These find-
ings are not included in Table 1, as the study's primary 
objective is to compare standard encryption algorithms 
with their noisy counterparts. 

However, the ChaCha20  combined with random Caesar 
II mod 120 (named here random noisy ChaCha20 strat-
egy) has shown to be faster than random noisy 3DES, 
random noisy AES-256, and random noisy Blowfish, of 
random noisy proposals here experimented, when they 
have been applied to ciphertext.  

The random noisy ChaCha20 strategy based on 
ChaCha20 and random Caesar II mod 120 has showed 
superior speed when applied to ciphertext, regarding to 
random noisy 3DES, random noisy AES-256, and ran-
dom noisy Blowfish, methods here tested. In the same 
vein, the most balanced results are also achieved with 
DES schemes that incorporate its random noisy strate-
gy, despite their disadvantages. 
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Concerning the novel random noisy ChaCha20 alterna-
tive has shown to be between 1.01 and 1.09 times faster 
than random noisy 3DES, random noisy AES-256, and 
random noisy Blowfish,  of the random noisy strategies 
here studied. With a range of 0.13 to 0.74 milliseconds 
as difference. 

A comparison of ChaCha20 and its random noisy ver-
sion indicates that the encryption speed difference is 
not substantial. Traditional ChaCha20 is 1.09 times 
faster than the random noisy strategy, with a difference 
of just 0.69 milliseconds (see Table 1). Both ChaCha20 
alternatives tested in this research had a plaintext length 
limit of 255 characters, as discussed above. 

The experiments conducted did not encounter any is-
sues of this limitation. In any case, it is considered that 
this measure alone produces a considerable improve-
ment in the trust of encryption strategy performance. 

Random noisy schemes show promise for experimental 
procedures, but additional factors require examination 
given the constraints of this study, where all tests were 
limited to 255 characters in plaintext. Under the same 
conditions, the 3DES and Blowfish alternatives were 
employed, as previously discussed. 

Each encryption strategy was evaluated based on its 
own training sample, being designed independently. 
However, the random Caesar schemes have been shown 
to increase data security in organizations [4]-[5], [9], [11], 
and the results of random noisy strategies yield simi-
lar positive outcomes. As shown in Table 1, the global 
average calculation reflects this effect. Hence, the ran-
dom noisy approaches yield ciphertexts that they are 
slightly more extensive. The results indicated that DES-
generated ciphertext is faster than that of ChaCha20, 
3DES, AES-256, and Blowfish. 

Nevertheless, the security implications of using DES are 
significant, as its ciphertext may be susceptible to de-
cryption. The experiments further revealed an average 
error rate of 1.0% during the encryption and decryption 
processes. The application of random noisy strategies to 
standard encryption algorithms resulted in dynamic ci-
phertext outputs in all cases. 

In our research, we aim to highlight that DES, despite 
its reported fast encryption schemes, exhibited errors 
in decryption in our experiments. This situation is not 

considered a good indicator. The error is attributed to 
the input data, rather than the encryption process itself. 
In practical domains, advanced users often incorporate 
non-standard characters into their passwords, such as 
non-printable symbols or special characters. The DES 
algorithm performs well when evaluated using print-
able characters, but encounters issues when processing 
non-standard characters. Specifically, when we input 
the characters '▓' (ordinal 9619) and '?' (ordinal 65533) 
into the password or plaintext, DES is the only algorithm 
that fails, whereas the other strategies do not exhibit this 
issue. Therefore, our proposal, based on random noisy 
ChaCha20, aims to improve upon these schemes. 

In these terms, character errors with ordinal values out-
side the ASCII table range are not a result of the en-
cryption/decryption process. Rather, these errors occur 
when a user enters a plaintext, simulating a password, 
that includes characters that are not part of the ASCII 
table. For example, the characters '▓' y '?' with ordinal 
values 9619 and 65533, respectively, they are not val-
id ASCII characters. While this situation could be ad-
dressed by working with binary data, it is considered 
outside the scope of the current study, which focuses on 
the injection of noise into plaintext and ciphertext. We 
are currently not working with files in different formats.  

Despite that the processing time for FinalPackage 
ciphertext was greater than that of the standard al-
gorithms, as evident in Table 1's Test 1 and Test 2.  
ChaCha20 proposals show faster execution times rela-
tive to the 3DES, AES-256, and Blowfish  strategies. The 
random noisy schemes, nonetheless, consistently yield 
dynamic ciphertext outputs. Cybercriminals would en-
counter significant obstacles in decrypting data, as they 
would need to determine each random Ki shifting value 
in advance, which it has been previously hidden. 

Moreover, when the novel partial noisy injection 
schema is used which it is presented in [5], named as 
PartialNoisy proposal. The decryption process be-
comes in very confused task when this additional vari-
ant is employed. These tasks of discovering data might 
be very hard because it has not been yet studied, includ-
ing quantum computing. No experiments were carried 
out with PartialNoisy. It is considered a future inves-
tigation. 

In this context, repeated application of these random 
noisy strategies can obtain a dynamic and better results 
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in comparison with the traditional static encryption al-
gorithms. 

This noisy injection alternative can increase the security 
degree of the ciphertext or plaintext. Besides, this situa-
tion might warn us against future quantum computing 
attacks [8], [22]-[23], [42], improving the digital data securi-
ty of the organizations, as mentioned above. 

Additionally, the resilience of these random noisy al-
ternatives to various cyberattacks remains unevaluated, 
leaving potential vulnerabilities unknown. In previous 
research [4]-[5] have recommend utilizing downsized ci-
phertext with reduced random or mutation approaches 
[4] as reliable indicators. 

These approaches allow for efficient encryption and 
short ciphertexts, while ensuring data security is not 
compromised, as the partial ciphertext is secured 
through Ki shifting before being stored. 

Therefore, these alternatives can present a low risk for 
digital data theft by inserting a larger proportion of 
noise into the ciphertext. The use of reduced random 
and mutation schemes could be promising. However, 
this work does not cover these options because they are 
potential topics for future works. 

Notwithstanding the difficulties, the study's goals and 
hypotheses were fulfilled as planned. By utilizing noisy 
injection, the random noisy ChaCha20 offers a novel 
approach to dynamic encryption, yielding ciphertext 
outputs that they are unique each time. This approach 
can lead to diverse results, even with the same plaintext 
and parameters, potentially misleading and hindering 
cybercriminals' efforts. This information can be corrob-
orated in Table 1. 

Our analysis of standard encryption algorithms versus 
random noisy strategies indicates that noisy injection 
can be a safe and effective alternative for organizations. 
It includes the novel random noisy ChaCha20 strategy, 
particularly in those environments, which have adopted 
the use of traditional ChaCha20. 

The random noisy scheme is recommended to enhance 
digital data security in this type of cryptosystem.  It is 
considered a safe measure for organizations because 
the simple fact of having this novel alternative based on 
noisy injection. It opens a wide range of opportunities 

for organizations regarding its use because it guarantees 
improvement in the security of digital data.

A potential area for further research is modifying 
the dynamic encryption methodology presented in 
this study to incorporate strategies such as reduced 
noisy schemes [5] and reduced random mutation [4]. 
Applying these strategies to the camouflaging cipher-
text has shown a reduction of up to 33% in ciphertext 
size in FinalPackage compared to random noisy ap-
proaches. Another strategy that could be examined is 
the application of different methods for noisy injection. 
Particularly, approaches that combine the simultane-
ous random noisy methodology with AI based on the 
nearest neighbor rule [8], [10]-[11], [46]-[47], [65], [67], and 
pseudo-hexadecimal encoding [8]-[10], as mentioned 
previously. They are worth exploring, presenting nu-
merous avenues for further investigation in future 
studies.

IV. CONCLUSIONS

The updating of cybersecurity strategy periodically 
such as encryption methods, it is one of the factors with 
a great influence for safety digital data in organizations. 
However, it does not guarantee their digital data secu-
rity. Recent research highlight the existence of multiple 
methodologies examining the issues related to encryp-
tion vulnerabilities. A strategy that is too well-known 
can become compromised and ineffective. In previous 
studies have proposed various dynamic encryption al-
ternatives to address the issue of digital data theft, as 
mentioned above. 

This paper presents a novel modification of these meth-
odologies. It is based on a fusion of techniques with a 
standard encryption algorithm combined with random 
Caesar methodology, for use in real applications of the 
organizations. 

A new dynamical encryption proposal, known as the 
random noisy ChaCha20 strategy is presented in this 
paper. Additionally, a comparison of dynamic encryp-
tion alternatives based on five random noisy strategies 
were conducted. 

These methods use artificial intelligence to inject noise 
into ciphertext, relying on random and heuristic ap-
proaches as outlined above. Given its capabilities, it 
is well-suited for deployment in actual organization-
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al environments. Due to that the methodology based 
on noisy injection offers an important contribution 
to amend deficiencies, which were produced by inad-
equate standard encryption strategies. Thereby, it can 
increase its usefulness. 

Experimental findings with dynamic random noisy 
encryption alternatives have confirmed their capacity 
for handling cyberattacks and data security issues with 
high levels of assurance. Notably, these random noisy 
strategies consistently yield dynamic and generalized 
results that surpass those achieved with standard en-
cryption algorithms (see Table 1).  

We aim to explore this issue in more depth through 
additional research. One technique we will be investi-
gating involves implementing measures for reducing 
the size of ciphertext generated by random noisy strate-
gies. One approach could be to utilize reduced random 
schemes or reduced mutation strategies, as mentioned 
above, which facilitate the concealment of ciphertext 
operations. 

Another option worth considering is the utilization of 
multiple methods for noisy injection. Particularly, the 
techniques that merge simultaneous random noise with 
nearest neighbor-based AI and pseudo-hexadecimal 
encoding, as outlined above. Naturally, this opens up 
a wide range of possibilities that we plan to explore in 
future work.
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