Fotoacústica: estudiar la materia escuchando la luz

Autores/as

DOI:

https://doi.org/10.20983/cienciavital.2025.03.bas.02

Palabras clave:

Fototérmica, Termofísica, Calor

Resumen

El efecto fotoacústico ocurre cuando la luz es absorbida por un material y provoca pequeños cambios de temperatura y vibraciones que se transforman en sonido detectable mediante sensores. Este fenómeno, descubierto en el siglo XIX, ha cobrado gran relevancia gracias al desarrollo de nuevas tecnologías que permiten aprovecharlo en distintos campos. En este artículo se explica de manera sencilla cómo se origina el efecto fotoacústico y se muestran ejemplos de sus aplicaciones en áreas tan diversas como la medicina, donde se utiliza para obtener imágenes no invasivas de tejidos, la agricultura, para mejorar la calidad de los cultivos y alimentos, o el medio ambiente, al facilitar la detección de contaminantes en el aire y el agua. Más allá del interés científico, la fotoacústica representa una herramienta prometedora con beneficios directos para la salud, la industria y el cuidado del entorno.

Biografía del autor/a

Ing. Francisco Javier Castillo Romero, Tecnológico Nacional de México-Instituto Tecnológico de Orizaba

Ingeniero en Mecánica por la Universidad Veracruzana, actualmente estudiante de Posgrado en el Instituto Tecnológico de Orizaba. Entre sus áreas de interés figura salud, programación y diseño.

Dr. José de Jesús Agustin Flores Cuautle, SECIHTI-Instituto Tecnológico de Orizaba

Ingeniero en Biónica por el Instituto Politécnico Nacional (IPN), doctor en Ciencias con especialidad en Bioelectrónica por el CINVESTAV-IPN y posdoctorado en el grupo de Biofísica y Termofísica del Departamento de Física de la Universidad Católica de Leuven (KU-Leuven), Bélgica. Sus líneas de investigación incluyen el desarrollo de instrumentación biomédica, el estudio de técnicas fototérmicas y materiales inteligentes, así como aplicaciones orientadas a la mitigación de la contaminación.

Dr. Oscar Osvaldo Sandoval González, Instituto Tecnológico de Orizaba

Profesor investigador de tiempo completo en el Instituto Tecnológico de Orizaba, adscrito a la División de Estudios de Posgrado e Investigación de la Maestría en Ingeniería Electrónica. Sus líneas de investigación abarcan el diseño y desarrollo de sistemas biónicos, robots para rehabilitación, sistemas inteligentes, interfaces multimodales, análisis biomecánico del cuerpo humano, programación en entornos de realidad virtual, visión artificial, maquinaria industrial, sistemas mecatrónicos controlados por electromiografía e interfaces cerebro-computadora.

Dra. Gemima Lara Hernández, Instituto Tecnológico de Orizaba

Ingeniera en Mecatrónica por la Universidad Politécnica de Chiapas, con maestría en Bioelectrónica por el CINVESTAV-IPN y doctorado en Ingeniería de Sistemas por el Instituto Politécnico Nacional. Ha participado en concursos de matemáticas y física, además de impartir clases en bachillerato, licenciatura y posgrado desde 2005. Cuenta con publicaciones científicas desde 2011 y es miembro del Sistema Nacional de Investigadores e Investigadoras desde 2021. Sus campos de investigación incluyen la bioelectrónica, la ingeniería de sistemas y la física de materiales blandos. Entre sus principales temas de interés se encuentran las propiedades físicotérmicas y opto-fotoacústicas de materiales y muestras orgánicas, el diseño de sistemas, los biorreactores y reactores, así como el desarrollo de modelos matemáticos y simulaciones.

Citas

Rosencwaig, A. y A. Gersho, *Theory of the photoacoustic effect with solids*. Journal of Applied Physics, vol. 47, no. 1, p. 64, 1976, doi: [https://doi.org/10.1063/1.322296](https://doi.org/10.1063/1.322296).

Halliday, D., R. Resnick y J. Walker, *Física*. CEA, 2003.

Alonso, M. y E. Finn, *Física: Campos y ondas*. Pearson Educación, 1998.

Krishnaswamy, S., “Photoacoustic Characterization of Materials,” en *Springer Handbook of Experimental Solid Mechanics*, W. N. Sharpe (Ed.). Springer US: Boston, MA, 2008, pp. 769–800.

Setiawan, A., F. Setiaji, D. Nugroho, *et al.*, “Subsurface detection of opaque and solid material defect based on photoacoustic effect,” *Journal of Instrumentation*, 2020, vol. 15, no. 04, P04010, doi: [https://doi.org/10.1088/1748-0221/15/04/P04010](https://doi.org/10.1088/1748-0221/15/04/P04010).

Tserevelakis, G. J., A. Dal Fovo, K. Melessanaki, *et al.*, “Photoacoustic signal attenuation analysis for the assessment of thin layers thickness in paintings,” *Journal of Applied Physics*, 2018, vol. 123, no. 12, art. 123102, doi: [https://doi.org/10.1063/1.5022749](https://doi.org/10.1063/1.5022749).

Rück, T., R. Bierl y F.-M. Matysik, “Low-cost photoacoustic NO₂ trace gas monitoring at the pptV-level,” *Sensors and Actuators A: Physical*, 2017, vol. 263, pp. 501–509, doi: [https://doi.org/10.1016/j.sna.2017.06.036](https://doi.org/10.1016/j.sna.2017.06.036).

Dong, M., C. Zheng, L. Dong, *et al.*, “Development and measurements of a mid-infrared multi-gas sensor system for CO, CO₂ and CH₄ detection,” *Sensors*, 2017, vol. 17, no. 10, p. 2221, doi: [https://doi.org/10.3390/s17102221](https://doi.org/10.3390/s17102221).

Grzegorczyk, M., S. Pogorzelski y P. Rochowski, “Towards a novel class of photoacoustics-based water contamination sensors,” *Journal of Environmental Chemical Engineering*, 2022, vol. 10, no. 3, p. 107983, doi: [https://doi.org/10.1016/j.jece.2022.107983](https://doi.org/10.1016/j.jece.2022.107983).

Bicanic, D. D., “On the photoacoustic, photothermal and colorimetric quantification of carotenoids and other phytonutrients in some foods: a review,” *Journal of Molecular Structure*, 2011, vol. 993, no. 1–3, pp. 9–14, doi: [https://doi.org/10.1016/j.molstruc.2010.12.061](https://doi.org/10.1016/j.molstruc.2010.12.061).

Bedoya, A., F. Gordillo-Delgado, D. Zapata-Sarmiento, *et al.*, “Thermal effusivity measurement of conventional and organic coffee oils via photopyroelectric technique,” *Food Research International*, 2017, vol. 102, pp. 419–424, doi: [https://doi.org/10.1016/j.foodres.2017.09.013](https://doi.org/10.1016/j.foodres.2017.09.013).

Gordillo-Delgado, F., E. Marín, D. M. Cortés-Hernández, *et al.*, “Discrimination of organic coffee via Fourier transform infrared–photoacoustic spectroscopy,” *Journal of the Science of Food and Agriculture*, 2012, vol. 92, no. 11, pp. 2316–2319, doi: [https://doi.org/10.1002/jsfa.5628](https://doi.org/10.1002/jsfa.5628).

N’Soukpoe-Kossi, C. N., R. Martel, S. Hotchandani y R. M. Leblanc, “Kinetic study of Maillard reactions in milk powder by photoacoustic spectroscopy,” *Journal of Agricultural and Food Chemistry*, 1988, vol. 36, no. 3, pp. 497–501, doi: [https://doi.org/10.1021/jf00081a023](https://doi.org/10.1021/jf00081a023).

Hernández-Aguilar, C., E. S. Gil, O. Z. Pérez, *et al.*, “Photoacoustic Spectroscopy in the Optical Characterization of Foodstuff: A Review,” *Journal of Spectroscopy*, 2019, vol. 2019, p. 5920948, doi: [https://doi.org/10.1155/2019/5920948](https://doi.org/10.1155/2019/5920948).

Lara Hernández, G., C. Hernández Aguilar, I. de Jesús Perea Flores, *et al.*, “Thermal properties of maize seed components,” *Cogent Food & Agriculture*, 2023, vol. 9, no. 1, p. 2231681, doi: [https://doi.org/10.1080/23311932.2023.2231681](https://doi.org/10.1080/23311932.2023.2231681).

Lv, G., C. Du, Z. Zhu, *et al.*, “Rapid and Nondestructive Detection of Pesticide Residues by Depth-Profiling Fourier Transform Infrared Photoacoustic Spectroscopy,” *ACS Omega*, 2018, vol. 3, no. 3, pp. 3548–3553, doi: [https://doi.org/10.1021/acsomega.8b00339](https://doi.org/10.1021/acsomega.8b00339).

Baptista-Filho, M., H. G. Riter, M. G. Silva, F. J. Luna y C. G. Werneck, “Ammonia traces detection based on photoacoustic spectroscopy for evaluating ammonia volatilization from natural zeolites at typical crop field temperature,” *Sensors and Actuators B: Chemical*, 2011, vol. 158, no. 1, pp. 241–245, doi: [https://doi.org/10.1016/j.snb.2011.06.012](https://doi.org/10.1016/j.snb.2011.06.012).

Gordillo-Delgado, F., D. Zapata-Sarmiento y A. Bedoya, “Photoacoustic Technique Applied to the Assessment of the Dosage of a NPK Fertilizer in Maize (Zea mays L.),” *Journal of Agricultural Science and Technology*, 2023, vol. 25, no. 1, pp. 225–238, doi: [https://doi.org/10.52547/jast.25.1.225](https://doi.org/10.52547/jast.25.1.225).

Omar, M., J. Aguirre y V. Ntziachristos, “Optoacoustic mesoscopy for biomedicine,” *Nature Biomedical Engineering*, 2019, vol. 3, no. 5, pp. 354–370, doi: [https://doi.org/10.1038/s41551-019-0377-4](https://doi.org/10.1038/s41551-019-0377-4).

Xu, M. y L. V. Wang, “Photoacoustic imaging in biomedicine,” *Review of Scientific Instruments*, 2006, vol. 77, no. 4, art. 041101, doi: [https://doi.org/10.1063/1.2195024](https://doi.org/10.1063/1.2195024).

Lara Hernández, G. y J. J. A. Flores Cuautle, “Photothermal Techniques in Cancer Detection—Photoacoustic Imaging,” en *Diagnosis and Treatment of Cancer using Thermal Therapies*, C. J. Trujillo Romero y D.-L. Flores (Eds.). CRC Press, 2023, pp. 184–199.

Ye, J., J. Xie, H. Zhao, *et al.*, “Quantitative Photoacoustic Diagnosis and Precise Treatment of Inflammation In Vivo Using Activatable Theranostic Nanoprobe,” *Advanced Functional Materials*, 2020, vol. 30, no. 38, p. 2001771, doi: [https://doi.org/10.1002/adfm.202001771](https://doi.org/10.1002/adfm.202001771).

Farajollahi, A. y M. Baharvand, “Advancements in photoacoustic imaging for cancer diagnosis and treatment,” *International Journal of Pharmaceutics*, 2024, vol. 665, p. 124736, doi: [https://doi.org/10.1016/j.ijpharm.2024.124736](https://doi.org/10.1016/j.ijpharm.2024.124736).

Zhang, P., L. Li, L. Lin, *et al.*, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” *Journal of Biophotonics*, 2018, vol. 11, no. 1, art. e201700024, doi: [https://doi.org/10.1002/jbio.201700024](https://doi.org/10.1002/jbio.201700024).

Descargas

Publicado

29-09-2025

Número

Sección

Ciencias Básicas